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GOES,	Meteosat,	and	MTSAT					http://www.ssec.wisc.edu/data/comp/wvmoll.html	
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Atmospheric	Rivers	

Satellite	water-vapor	measurements	from	Dec.	18,	2010,	show	an	atmospheric	river	making	landfall	in	
California.	Water	vapor	data	from	SSMI.	Credit:	Bin	Guan,	NASA/JPL-Caltech	and	UCLA.	



South	American	Monsoon		

Moisture	Trans.	&	Precip		
Nov-Mar,	ERA40	

ITCZ	to	the	south	
(Marengo	et	al.,	2012)		
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Vera	et	al,	BAMS	2006		

Literature:	Moist	Tr	and	
Low	level	Jet	(e.g.	
Marengo	et	al.,	2004)		

Influence	of	Low	Pressure	
systems	(e.g.	Seluchi	et	al.,	2003)	

Literature:	LLJ	and	precip	at	
LPB	(e.g.	Nicolini	et	al.,	2002)	
LLJ	and	MCS	(Salio	et	al.,	2007)	

Literature:	Moist	Tr	and	
precip	at	SACZ	(e.g.	
Liebmann	et	al.,	2004)	



CorrelaUon	maps	

Precipitaion	



IPCC	AR4,	Figure	3.27,	Source:	Trenberth	and	Caron	(2000)	

CorrelaUon	maps	

Prec	



IPCC	AR4,	Figure	3.27,	Source:	Trenberth	and	Caron	(2000)	
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IPCC	AR4,	Figure	3.27,	Source:	Trenberth	and	Caron	(2000)	

CorrelaUon	maps	

Prec	

SLP	 Temp	

ρi, j =
covtime preci, j,SOI( )

stdtime(preci, j ) ⋅ std
time(SOI )



What	if	both	variables	are	2D	x	t	?	

Take	the	Pearson’s	correlation,	
for	each	pair	of	points:	 ρi, j,k,l =

covt (Pi, j,MTk,l )
stdt (Pi, j )std

t (MTk,l )



�  Se	não	sabemos	estudar	estas	
correlações	complicadas,	podemos	
fazer	da	maneira	tradicional…	
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Nov-Mar	 Jul-Aug	

Amazon	

Ocean	

South	

OCEAN-AMAZON,	Vapor	mix	ra)o	
AIRS,	ERA,	NCEP	2003-2009		





Nov-Mar	 Jul-Aug	

Again,	a	simple	correla)on	gives:	

Arraut	et	al,	J.	Clim,	2012	



Vera	et	al,	BAMS	2006		

Ok,	so	climatologically	the	water	transport	from	the	
Amazon	to	the	subtropics	is	always	there…	Does	it	mean	

the	LLJ	is	not	important	at	al	!?!?		



Barbosa	and	Arraut,	Adv.	Geo.	2009	

Geopotential	Height	@	850	hPa(m)	

NAL	

Trough	

Hot	&	
Moist	air	

Cold	&	
dry	air	

Low	pressure	
Tongue	

Frontogenesis	in	 θe	(K/100km/day)	

Saddle	point	occurrence	

Saddle	point	



Wind	at	250hPa	
m/s	

Moisture	transport	
Kg/m/s	

PrecipitaUon	+1	day	
mm/day	

Arraut	and	Barbosa,	Adv.	Geo.	2009	

With	LPT	 Without	LPT	



Vera	et	al,	BAMS	2006		

It	looks	like	the	southward	transport	is	controlled	by	the	
NAL	and	the	geostrophic	winds	around	it.	Sometimes,	

the	winds	are	strong	enough	to	be	called	LLJ…	



� Mas	conseguimos	lidar	com	
aquelas	correções	de	4	termos??	



What	if	both	variables	are	2D	x	t	?	
Set	a	threshold	for	correlations	to	be	
considered	important,	and	draw	links	
between	points	with	high	correlation.	

ρi, j,k,l =
covt (Pi, j,MTk,l )

stdt (Pi, j )std
t (MTk,l )



Complex	Networks	
�  “In	the	context	of	network	theory,	a	complex	network	is	
a	graph	(network)	with	non-trivial	topological	features
—features	that	do	not	occur	in	simple	networks	such	
as	lattices	or	random	graphs	but	often	occur	in	graphs	
modeling	real	systems”.	-	Wikipedia	



Examples:	
�  people	that	are	friends	
�  computers	that	are	interconnected	
� web	pages	that	point	to	each	other	
�  proteins	that	interact	
�  brain	cells	transmitting	information	
�  phone-call	networks	
�  transportation	networks	
�  transmission	grids	



Complex brain network topology produced by a simple two-parameter model. 

National Academy of Sciences PNAS 2012;109:5549-5550 

©2012 by National Academy of Sciences 



Robust	classification	of	salient	links	in	complex	networks	
https://www.nature.com/articles/ncomms1847	



research	papers	on	‘hepa,,s	C	virus’.	Each	of	the	8,500	spots	is	a	single	author,	
and	the	lines	between	spots	represent	co-authorship	across	scien,fic	papers.	

http://social-physics.net/visualizing-scientific-collaboration-using-pubmed/	



Physics	Today	70,	1,	32	(2017)	



Basic	measures		
� Degree	distribution	(number	of	edges)	

�  1v/1e;	3v/2e;	1v/3e	

�  clustering	coefficient	of	vertex	i:	
�  d(i)	=	number	of	edges	between	
neighbors	divided	by	maximum	
possible		

#e	

#v	

1							2								3	



ProperUes	of	Real	Networks	
� Most	vertices	have	only	a	small	number	of	neighbors	
(degree),	but	there	are	some	vertices	with	very	high	
degree	(power-law	degree	distribution)	
�  scale-free	networks	

�  If	a	vertex	x	is	connected	to	y	and	z,	then	y	and	z	are	
likely	to	be	connected	
�  high	clustering	coefficient	

� Most	vertices	are	just	a	few	edges	away	on	average.	
�  small	world	networks	



My	intent	today	is…	
	
Give	examples	of	how	we	applied	Complex	Networks	for	
	
1.  Propagation	of	extreme	events	
2.  Cascading	moisture	recycling	
3.  Self-amplified	forest	loss	(with	climate	change)	
4.  Hysteresis	of	deforestation	



Summer	PrecipitaUon	



Extreme	precipitaUon	events	

Boers	et	al,	Nature	Comm.	2014	



Extreme	precipitaUon	events	

Boers	et	al,	Nature	Comm.	2014	











Boers	et	al,	Nature	Comm.	2014	

SESA	OUT	strengh								IN	strengh	



ECA	OUT	strengh								IN	strengh	

Boers	et	al,	Nature	Comm.	2014	



Precipitation	propagating	north,	
contrary	to	moisture	flux!	

~	80	km	/h	 Boers	et	al,	Nature	Comm.	2014	

Network	Divergence	



Can	we	predict?	

ALL YEARS Observed Not observed 

Forecasted 4% 3% 

Not forecasted 3% 90% 

Heidke Still Score = 0.47 of max 0.60 

El Nino Observed Not observed 

Forecasted 7% 7% 

Not forecasted 1% 85% 

Heidke Skill Score = 0.57 of max 0.60 



�  Besides	the	
�  Saddle	point	
�  Low	pressure	tongue	
�  NA	Low	
�  Through	
�  …	

�  There	is	a	Rossby	wave	
train	propagating	from	
the	extra	tropics!	

Boers,	Barbosa	et	al,	J.	Clim.	(2015)	



What	is	the	role	of	
Amazon?	

Prec	LPB?	

Prec	SE?	



2-Layer	Moisture	Transport	Model	

Observed	ET		

Observed	Precip	Observed	Winds	





Moisture	(complex)	network	

Zemp	et	al,	ACP	2014	

Just	for	grid	2	
E2	=	m22	+	m23	+	m24	
P2	=	m22	+	m12	



Cascading	

Different	paths	for	water,	and	
possible	cascading	before	getting	to	

“final”	destination!	
Zemp	et	al,	ACP	2014	



Cascading	
�  For	45%	of	the	pairs	of	
nodes,	the	direct	
transport	the	most	
important	

� Hence,	for	55%	a	
transport	with	at	least	
one	stop	is	more	
efficient!	

Fig.  - Distribution of optimal paths 
For 0 steps, local recycling  
For 2 steps, direct transport 
For 3 or more steps, path with cascading 

0           2             4             6             8 
Number of steps 

Zemp	et	al,	ACP	2014	



DRY	

WET	

EVAP-PREC	 %	of	Amazon	
ET	on	Precip	

Cascading	

20	-	24%	of	
precipitation	over	
LPB	comes	from	

ET	Amazon	

Cascading	
transport	=	+	6%	



Savanna 

Seasonal 
Forest 

Rainforest 

Malhi et al., Exploring the likelihood and mechanism of a 
climate-change induced dieback of the Amazon rainforest,  
Proceedings of the National Academy of Sciences, 2010 	

What	will	happen	
with	climate	change?	



Probability	of	finding	forest	

Zemp	et	al.,	Nature	Comm.	(2017)		



Simple	evapotranspiraUon	
model	on	a	monthly	Ume	scale	

Zemp	et	al.,	Nature	Comm.	(2017)		

Reduced	ocean	moisture	
by	the	end	of	21st	century	

What	would	happen	
with	the	vegetaUon?	





Non-linear	response	

One-way	coupling	PèVeg	
Fully	coupled	system	PçèVeg	 Zemp	et	al.,	Nature	Comm.	(2017)		

Self-amplified	loss	
increases	non-linearly	



End	of	21st	century	

�  Self-amplified	forest	loss	increases	nonlinearly	with	
decreasing	oceanic	moisture	inflow	because	of:	

1.  a	nonlinear	decrease	of	forest	resilience,		
2.  a	stronger	reduction	of	evapotranspiration	after	forest	

loss	and		
3.  an	increased	contribution	of	moisture	recycling	to	

total	rainfall	



Zemp	et	al.,	Nature	Comm.	(2017)		



Savanna 

Seasonal 
Forest 

Rainforest 

Malhi et al., Exploring the likelihood and mechanism of a 
climate-change induced dieback of the Amazon rainforest,  
Proceedings of the National Academy of Sciences, 2010 	

…	and	with	
deforestaUon?	



It	could	be	that…	
1.  Land-use	changes	that	reduce	

recycling	over	the	Amazon…	
2.  will	reduce	the	water	vapor	

transport	southward	(>	previously	
imagined	without	cascading)…	

3.  less	transport	=>	less	precipitation	
downwind…	

4.  Important	question	:	How	much	
can	we	reduce	the	moisture	flux	
before	reaching	a	tipping	point?		



1d	dynamical	system	

isolation	of	the	specific	relationship	between	a	deforestation-
induced	decrease	of	surface	heat	flux	(including,	in	particular,	
the	decrease	of	E),	and	the	positive	feedback	associated	with	
atmospheric	LH	release	

deforest	boxes	1	to	100	
and	see	what	happens…	



Our	simple	model:	
�  From	the	conservation	equations,	we	wrote	a	non-linear	set	

considering	moisture	transport	and	evap/convergence	feedback:	

�  Wind	=	sum	of	“trade	winds”	slowing	down	towards	the	Andes	
	
	

�  And	a	wind	dependent	on	latent	heat	release	

atmos:	
	
ocean:	

Boers	et	al.,	Nature	Scientific	Reports	(2017)		

Wc	gives	the	
coupling	strength	



Our	simple	model	(2)	
� We	also	need	to	calculate,	based	on	empirically	fitting	
the	observations,	
�  	Precip:	

	P	=	p1	+	p0	*	A	

�  Evap:		
	E	=	e0	/	(1	+	e(S-e2))	

�  and	Runoff:			
	R	=	r0	exp	(r1*S)	







DeforesUng	1->100	(east->west)	

Wind	ager	100%	deforestaUon	

Boers	et	al.,	Nature	Scientific	Reports	(2017)		

PrecipitaUon	at	box	#95	

For	strong	coupling,	22-55%	
deforestaUon	induces	a	
dramaUc	change	

Stronger	coupling,	stronger	
wind	reducUon	



Is	it	reversible?	

Boers	et	al.,	Nature	Scientific	Reports	(2017)		

Response	depends	on	Evap	
ager	deforestaUon...	But	
shape	is	the	same	

Hysteresis	response	
during	reforestaUon	

Or	it	never	come	
back,	if	coupling	is	
very	strong	





GNSS	Dense	Network	

�  Adams	et	al,	Atmos.	Sci.	Let.	2011	
�  Adams	et	al,	BAMS	2014	(accepted)	

IPW:		
-6	a	-0.5	h	

CTT:		
-3	a	0	h	







Experimento	GoAmazon	2014	



T3 site – 70km downwind 

•  Mixed	medium-field	
Manaus	aged	plume	
and	clean	conditions	

•  Affected	by	long	and	
short-range	BB	

Photo:	J.	Beat	

Photo:	R.	
Thalman	



Caixa	de	16	x	16	km	
em	torno	do	sítio	
experimental	



Eventos	convecUvos	com	CTT	

� Queda de pelo menos 50K em 2h 
� T0 = horário de mínimo CTT 
� Presença de precipitação 
� Presenção de rajada de vento 

Temperatura 
de brilho 

Tempo	

Tsfc	

-35oC 

-50oC 















GPS1, ref 

GPS2, 10 km 

GPS3, 80 km 
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Chuva	e	queda	de	
CTT	no	GPS1	

Correlação	
similar	

Correlação	mais	alta	
para	medidas	próximas	
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Lidar	

LIDAR	
Telescope	

Aerosol	

Back	
scattering	

Speed	of	light	is	3	x	108	m/s	and	
we	measure	at	20Mhz,	hence	
vertical	resolution	is	7.5m	

Clouds	

We	measure	light	intensity	vs	time	

Laser	pulses	
at	10Hz	



Lidar	



Cirrus	Clouds	
� Cirrus	found	from	8	to	19.6km	

�  Base	12.5±2.4	km	
�  Top	14.2±2.2	km	

Tropopause	

-25	degC	

Barja	&	Gouveia,	priv	comm	



� Cirrus	cloud	cover	at	Manaus	
�  83%	MAM	
�  52%	JJA	

Seasonality	

D.	Gouveia,	Msc	dissertation,	USP	

Diurnal	cycle	



Frequency	78	%	 83	%	 52	%	 77	%	



y = 0.0027x0.6397

R2 = 0.8758
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Polluted Continental

CCN	concentrations	and	AOT	over	the	cleanest	
continental	sites	are	similar	to	the	cleanest	marine	sites!	

Observa)ons	of	CCN	and	AOT	



Experimento	GoAmazon	2014	



Thanks!	
hbarbosa@if.usp.br	
www.fap.if.usp.br/~hbarbosa	


