

Modeling of aerosol processes in the atmosphere

Peter Tunved

Department of Environmental Science and Analytical Chemistry Stockholm University

Sweden

Scope of lecture

- Provide a fundamental overview of processes affecting aerosols in the atmosphere under cloud-free conditions
- Familiarize with basic functions to be used in exercises
- Apply process understanding to atmospheric data collected during the GoAmazon campaign.

Why interested in aerosols?

Aerosols and health

- Urban outdoor air pollution responsible for **1.3** million deaths annualy
- Indoor air pollution responsible for ~2 million premature deaths annualy (mainly in developing countries)

Aerosols and climate

The RF of the total aerosol effect in the atmosphere, which includes cloud adjustments due to aerosols, is -0.9 [-1.9 to -0.1] W m⁻² (medium confidence), and results from a negative forcing from most aerosols and a positive contribution from black carbon absorption of solar radiation.

There is high confidence that aerosols and their interactions with clouds have offset a substantial portion of global mean forcing from well-mixed greenhouse gases.

They continue to contribute the largest uncertainty to the total RF estimate. "

Apparently important....

Aerosols and climate in a changing atmosphere: "need-to-knows"

Constraining the aerosol effects

HOH

Why so difficult to get the indirect effect right?

- Aerosol-cloud-interactions are inherently difficult to describe – both qualitatively and quantitatively
- Even though progress has been made, further progress is hindered by limited model resolution and observation capabilities (e.g. Rosenfeld et al., 2014)
- This substantially hampers our ability to assess the role of these interaction in the climate system

Why important to describe aerosol dynamics?

The aerosol is continously changed via a number of dynamical (both physical and chemical) processes, altering the properties of the size distribution

Knowledge of these processes is necessary in order to accurately assess both **smaller scale interactions** (e.g. aerosol cloud interactions) as well as **large scale transport and processing**

Thus, aerosol processes are relevant on both micro and synoptic scale

Definition of aerosol

 $H_2SO_4(I) \leftrightarrow H_2SO_4(g)$, SO_2 , sot, (air)

Aerosol definition, cont.

A solid or liquid particle suspenden in a gas phase

The aerosol in the atmosphere is polydisperse and appear over a size range from a few nm up to 100µm

Always observed in the atmosphere; from a few 10's of particles in clean environments up to 10⁶ in polluted enviornments

Mass varies between few tenths of $\mu g * m^{-3}$ up to mg^*m^{-3} under extreme conditions

Typical tropospheric liftimes: days-weeks

Observing the aerosol

Mass, number, optical properties, chemical composition Either as bulk or size distributed

The aerosol is highly variable in space and time

Stockholm University

Modeling the atmospheric aerosols

Aerosol processes

Raes et al., Atm. Env., 2000

Sources of atmospheric aerosols

Sources of secondary and primary aerosols

Inorganic

 SO_2 (DMS,COS, CS_2) \rightarrow H_2SO_4

 $NO_{x'}$ $NH_3 \rightarrow HNO_3$, NH_4NO_3

Organic

Biogenic VOC (BVOC's; eg Monoterpenes)

Anthropogenic VOC's (generally high Mw)

Terpenoids: globally a very important source of secondary aerosols

Isoprene

Myrcene

trans-6-Ocimene

Figure 1. Molecular structures of the volatile hydrocarbons isoprene (C₅), some monoterpenes (C₁₀) and the semivolatile sesquiterpene β -Caryophyllene (C₁₅).

Kesselmeier and Staudt, 1999.

Terpene chemistry: a-pinene

Very complex chemistry!

Most well studied for αpinene and β-pinene

For most compounds, secondary oxidation steps are largely unknow

α-pinene most commonly abundant monoterpene

The ozone reaction believed to dominate SOA production

Dry deposition

Transport through air to a surface: Turbulent transport, transport over the laminar surface layer, surface properties

Wet deposition

Up-take in cloud droplets ("in-cloud scavenging"), up-take in falling rain droplets ("below-cloud scavenging")

Chemical reactions in the atmosphere

Reactions of different compounds with OH, ozone och NO₃

 $C_2H_6 \rightarrow CO_2+H_2O$

Aerosol dynamics

Stockholm University

Basic processes acting on single aerosol particles

- Gravitational settling
- Drag force
- Brownian motion

Single particle dynamics and Knudsen number

 $Kn = \frac{2\lambda}{D_{p}} Knudsen number$ $Where \lambda is mean free path of air (66nm@293K) and Dp is diameter of particle$ Stockholm University

Gravitational settling $F_{drag} = F_{grav}$

Brownian diffusion

Estimating displacement as function of size; Brownian diffusion vs gravitational settling

Dry depsoition

 $F=-v_d*C$ where: $F=flux \text{ to surface } m^{-2}s^{-1}$ $v_d=deposition \text{ velocity } (m/s)$ C=concentration of particles

$$F = -V_d C$$

$$F = -\frac{m}{s} * \frac{\#}{cm^3} = = \frac{\#}{m^2 s}$$

Only removal path in the dry atmosphere

Depends on:

- Atmospheric turbulence
- Phase of species (gas or particle)
- Physio-chemical properties of depositing species
 - Particles: size, density
 - Gases: water solubility, reactivity
- Surface properties (Reactive? Sticky? Irregular?(eg vegetation)

Resistance analogy cont'd

Resistance analogy

Aerodynamic resistance; surface layer: ~f(temperature; windspeed; surface roughness)

Laminar resistance; laminar surface layer: ~f(molecular or brownian diffusivity)

 $r_a + r_b + r_s$

Stockholm University

Surface resistance; surface properties: ~f(reactivitiy, solubility, pH etc.)

ľ,

Dry deposition velocity

$$v_{d} = \frac{1}{r_{t}} + v_{s} = \frac{1}{r_{a} + r_{b} + r_{a}r_{b}v_{s}} + v_{s}$$
SEDIMENTATION VELOCITY
$$V_{d} = \frac{1}{r_{t}} + v_{s} = \frac{1}{r_{a} + r_{b} + r_{a}r_{b}v_{s}} + v_{s}$$
QUASI-LAMINAR RESISTANCE
$$r_{a} = \frac{U}{u} * 2$$

$$r_{b} = \frac{1}{u} * (Sc^{-2/3} + 10^{-3/5t})$$
Sedimentation
$$u^{*} = friction \ velocity$$

Ageing due to dry deposition

Coagulation

- Mainly the result of Brownian motion, although other forces may come into play (electrical, gravitational etc)
- Two particles collide, aggregate and form one new particle
- Coagulation does not affect mass, but reduce number
- Most efficient for small particles

Coagulation

• Free molecular regime

$$RMS = \sqrt{(v_i^2 + v_j^2)}$$
$$CC = \pi(r_i^2 + r_j^2)$$

4

Coagulation

- Continuum regime
 - > the kernel in this regime is found by solving the time-dependent diffusion equation around a stationary spherical absorber in an infinite medium with suspended particles. Transport and collision through "random walk"

- Transition regime (~1<Kn<50)
 - Semi-empirical solution to the collision kernels (Fuchs 1964, "Flux matching")

Coagulation; *Fuchs form of the coagulation coefficient*

$$\frac{dN}{dt} = -K_{12}N_1N_2$$

$$K_{12} = 2\pi D_1 D_2 (Dp_1 + Dp_2) \left(\frac{Dp_1 + Dp_2}{Dp_1 + Dp_2 + 2(g_1^2 + g_2^2)^{1/2}} + \frac{8(D_1 + D_2)}{(c_1 + c_2)^{1/2}(Dp_1 + Dp_2)} \right)^{-1}$$

$$D_{1,2} = f\left(T, \frac{1}{Dp}\right)$$

$$C = f\left(T, \frac{1}{Dp^3}\right)$$

$$K_{12} = COAG_COEFF(Dp_1, Dp_2, T, P)$$

Aerosol dynamics: coagulation

Gas-to-particle production

Secondary particle production: Saturation ratio

$$S = \frac{p_a}{p^{s_a}(T)}$$

S < 1, Subsaturation S > 1, Supersaturation S = 1, Saturation

S=saturation ratio p_{a=}partial pressure of a p_a^s=saturation vapor pressure of a at temperature T

$$\ln\left(\frac{p^{s}_{a,1}}{p^{s}_{a,2}}\right) = \frac{\Delta H_{vap}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

Clausius-Clapeyron relation

Concepts of gas-to-particle conversion

Kelvin effect

Vapor pressure of compound A over a curved surface always exceed that over a flat surface

• Stockholm University

Gas-to-particle conversion: How is supersaturation reached

Stockholm University

Nucelation

Figure 2: Example of nucleation event observed on 11th May 2001, Hyytiälä (61.51°N, 24.17°E).

Particle number or particle mass? Role of condensation sink

- Amount of pre-existing aerosol surface crucial
 - Generation of supersaturated conditions + low surface area of pre-existing particles favours formation of particle number via nucleation
 - Generation of supersaturated conditions + High concentration of pre-existing particles favours formation of particle mass via condensation
 - This is often referred to as "condensation sink"

Condensation

 $c_s = saturation$ vapor pressure/concentration over surface $c_s = kc_0, \quad k = Kelvin effect$

• •

$$\frac{dM}{dt} = 4\pi r_p D_g (c_{\infty} - c_s)$$

$$\frac{dM}{dt} = \beta 4\pi (r_p + r_g) (D_p + D_g) (c_{\infty} - c_s)$$
where
$$\beta_M = \frac{Kn + 1}{0.377Kn + 1 + \frac{4}{3}\alpha^{-1}Kn^2 + \frac{4}{3}\alpha^{-1}Kn}$$
B=Fuchs and Sutugin non-continuum correction factor
$$\beta_M = \frac{Kn + 1}{0.377Kn + 1 + \frac{4}{3}\alpha^{-1}Kn^2 + \frac{4}{3}\alpha^{-1}Kn}$$

$$\beta_{\text{Fuchs and Sutugin non-continuum correction factor}}$$

Aerosol dynamics: condensation

Wet depositon

Scavenging of aerosols: Impaction, diffusion and interception

Below cloud scavengning of particles

$$\Lambda(d_p) = \int_0^\infty \frac{\pi}{4} D_p^2 U(D_p) E(D_p, d_d) N_{D_p} dD_p$$

Dp = rain droplet diameter d_d = *particle* diameter $E(Dp, d_d)$ = *scavenging* efficiency

Collection efficiency

Scavengning

- Thus, we need a droplet distribution
- Marshal Palmer droplet distribution

$$\frac{N(Dp)}{dDp} = n_0 \exp(4.1 p_0^{-0.21} D_p)$$

FIG. 2. Distribution function (solid straight lines) compared with results of Laws and Parsons (broken lines) and Ottawa observations (dotted lines).

Scavengning coefficient, Λ

Simulating below cloud scavengning

Simple approach: Assuming constant, linear and irreversible scavengning

$$\frac{\partial C}{\partial t} = -W_{gas/rain} + E + R$$

(where R and E are additional reactions and emissions, resp.)

Assuming no R or E, and as :

$$W_{gas/rain} = \Lambda_{i,gas} C_{i,gas} (e.g. s^{-1} * \mu g / m^3)$$
$$\frac{\partial C}{\partial t} = -\Lambda_{i,gas} C_{i,gas}$$
$$C = C_0 e^{-\Lambda_{i,gas} t}$$

Aerosol dynamics: coagulation, condensation and dry deposition

Stockholm University

Explaining the residence time

Aerosol dynamics: Cloud processing

experiments: transport between Värriö and Pallas 2006-2008

