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Applications of second-moment turbulent closure hypotheses to geophysical fluid problems have 
developed rapidly since 1973, when genuine predictive skill in coping with the effects of stratification 
was demonstrated. The purpose here is to synthesize and organize material that has appeared in a 
number of articles and add new useful material so that a complete (and improved) description of a 
turbulence model from conception to application is condensed in a single article. It is hoped that this 
will be a useful reference to users of the model for application to either atmospheric or oceanic 
boundary layers. 

1. INTRODUCTION 

This article is a summary of our experience at Princeton 
University in second-moment modeling where we have tried 
to trace model development from the determination of model 
constants to the applications of the model to geophysical 
fluid dynamic problems. It includes, in summary fashion, the 
basic modeling assumptions first put forth by Melior and 
Herring [1973], Melior [1973], and Melior and Yamada 
[1974] and references numerous other application papers by 
us and others who have used the model. New material is also 

included in this paper. 
Our first experience with second-moment turbulence mod- 

eling began at the time of the 1968 Stanford Conference on 
Turbulent Boundary Layer Computation [Kline et al., 1968] 
with a simple Prandtl type model based on the solution of the 
turbulent kinetic energy equation. At that time, this model, a 
model by Bradshaw, and our older eddy viscosity model did 
very well in predicting all of the data compiled for the 
conference. Thus it was not clear that more complicated 
models based on hypotheses by Rotta [1951] and Kolmo- 
gorov [1941] and requiring consideration of all components 
of the Reynolds stress tensor could be justified on the basis 
of improving predictions. 

The first results from the second-moment calculations of 

Donaldson and Rosenbaum [1968] (using Rotta's energy 
redistribution hypothesis but not the Kolmogorov isotropic 
dissipation hypothesis) when applied to wakes and jets and 
subsequent studies by Hanjalic and Launder [1972] were 
encouraging. The newer models, however, involved more 
empirical constants than did the older models, which, on this 
basis alone, Would facilitate agreement with data. 

Our interest in the Rotta-Kolmogorov model [Melior and 
Herring, 1973] was greatly enhanced by data obtained by So 
and Melior [1973, 1975] which demonstrated the effect of 
wall curvature on turbulent flow. On stable, concave walls 
the Reynolds stress was virtually extinguished in the inner 
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portion. With no empirical adjustment involving curvature, 
the model quantitatively predicted this rather dramatic oc- 
currence [So, 1975; Melior, 1975]. The same model, when 
extended in (it now seems) a rather straightforward manner, 
predicted the observed stabilizing and destabilizing effect of 
density gradients in a gravity field [Melior, 1973] according 
to data by Businger et al. [1971]. All empirical constants 
were obtained from neutral flows and were directly related 
to data for the special case where turbulent energy produc- 
tion is in balance with dissipation. This process of selecting 
constants is reviewed in this paper and refined somewhat in 
relation to the earlier papers. 

The model was then extended and applied to flows of 
practical interest in geophysical fluid dynamics. We will 
illustrate some of these applications and note references to 
other investigators who have made use of the model. 

The model (or models, since there are various degrees of 
approximation and simplification) is not fundamentally dif- 
ferent from models by Lewellen and Teske [1973], Lewellen 
et al. [1976], Launder [1975], and Zeman and Lumley [1976] 
in that hypotheses by Rotta and Kolmogorov are their more 
important elements together with the fact that various turbu- 
lent length scales, which reside in the hypotheses, are all 
assumed to be proportional. There are differences. For 
example, we use a relatively low order version of Rotta's 
'energy redistribution' hypothesis. Other authors claim 
some benefit in adding more nonlinear terms; however, our 
perception is that the benefits are marginal and may even 
create errors in one application relative to the one in which 
the additional, requisite constants were obtained. We also 
use a fairly simple turbulent diffusion model in contrast, for 
example, to the more complex diffusion model of Andre et 
al. [1976a, b]. It is probably true that in many cases, 
turbulent diffusion is not modeled accurately by us and 
others. The limiting, free-convection case (a shearless 
boundary layer heated from below and bounded from above 
by a stable, inversion layer) is cited by Lumley et al. [1978] 
as an application peculiarly in need of higher-order diffusion 
modeling. They state that in models using gradient transport, 
'the rise of the inversion base is very poorly predicted, while 
the vertical distribution of turbulent energy is wildly in 
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error.' As will be seen below, our own experience contra- 
dicts this statement. As a matter of fact, practically any 
model, including the so-called 'convective adjustment' mod- 
el, will produce accurate prediction of the rise of the 
inversion base, and, further, our model seems to do well in 
predicting turbulent energy and other turbulent quantities, as 
did the model by Lewellen et al. [1976]. (See also Lewellen 
[1977] for a concise review of the 'ARAP' model. A review 
by Harsha [1977] in the same monograph further reviews a 
generally simpler class of models.) 

The major weakness of all the models probably relates to 
the turbulent master length scale (or turbulent macroscale, 
or turbulent inertial scale), and, most important, to the fact 
that one sets all process scales proportional to a single scale. 
As we have tried to do here, it is possible first to test the 
proportionality idea exclusive of the length scale per se, and 
all seems to work not perfectly, but well. 

The master length scale equation we use is quite empirical. 
It acknowledges that eddies and their scales advect; it 
undoubtedly interpolates well between the few well-docu- 
mented laboratory flows on which it is based and does seem 
to perform correctly for geophysical flows; however, it may 
be deficient if extrapolated far from its data base. Neverthe- 
less, on conceptual grounds we believe the equation we use 
is much to be preferred relative to the transport equation for 
dissipation adopted by many to provide the needed length 
scale; our reasons will be discussed below. 

Although there are differences in the various models, the 
overall observation may be made that in less than a decade 
we have progressed from an emphasis on modeling mean 
flow properties per se to a concern for the accuracy of 
modeling turbulent variances and covariances. To be more 
specific, it would appear that in comparison with laboratory 
data, maximum errors for these latter quantities are of the 
order of 30-50%, whereas errors in mean properties are 
much less. 

On the basis of the rather broad spectrum of laboratory 
flows simulated by the models, it may not be too optimistic 
to believe that they should perform realistically in more 
complicated geophysical situations. Recent experience 
where the turbulence models have been incorporated into a 
large-scale geophysical numerical model contributes to this 
optimism. 

2. THE BASIC MODEL 

The Closure Assumptions 

The equations for the ensemble mean velocity Ui, pres- 
sure P, and potential temperature O are 

0p • 
• + -- (pUi) = 0 (1) 
Ot OX i 

DUj 0 OP 
P--•-t + Pejklf kUl = • (--p(UkUj)) gyp (2) C•X k C•Xj 

DO 0 
p - • (-p(u•,O)) (3) 

Dt Oxa 

where D( )/Dt = UkO( )/Oxk + O( )Ot; gj is the gravity 
vector, and ft, is the Coriolis vector. Uppercase letters 
represent ensemble mean variables, whereas lowercase let- 
ters are the turbulent variables. Angle brackets represent 

ensemble means of turbulence variables. An exception is the 
mean density p. It should be noted that the Boussinesq 
approximation (density a constant except in the buoyancy 
term) need not be invoked for the mean equations of motion. 
However, in what follows, the Boussinesq approximation 
for the turbulence equations is invoked in that density 
fluctuations are neglected except in the buoyancy term, 
where, indeed, they exert a profound influence on the 
turbulence. In the ocean the mean density is related through 
the equation of state to the mean potential temperature and 
salinity. The equation for salinity is identical to (3). Analo- 
gously, in the atmosphere, mean density is related to mean 
potential temperature and water vapor. In the following 
discussion, density fluctuations are written/30, where/3 is 
the coefficient of thermal expansion. It is a simple extension 
to include the effects of salinity and water vapor fluctuation. 
Inclusion of liquid water in the atmosphere is more compli- 
cated and is postponed until section 8. 

In general, a radiative flux divergence term should appear 
on the right side of (3); however, in this paper, radiative 
effects will not be considered. 

If one writes the single-point equations for the moments of 
velocity and temperature, unknown higher-moment terms 
appear. The model we adopted [Mellor and Herring, 1973; 
Mellor, 1973] (see these papers for the methodology by 
which the specific tensohal algebra is established) to deter- 
mine these unknowns is based on the energy redistribution 
hypothesis of Rotta in the form 

+ = (u•u:) - Oxj Oxi 31• • 

ou• + (4) + C•q2 OXj OX i / 
and the Kolmogorov hypothesis of local, small-scale isotro- 
py such that the dissipation is modeled according to 

( OUi OUj t 2 q3 = • 80ø 2• XOx• Ox• • A• (5) 

In the above, ui is the turbulent fluctuation velocity, whereas 
q2 = (ui2); p is the fluctuation pressure; •, is the kinematic 
viscosity; l• and A• are length scales; and C• is a nondimen- 
sional constant. The above model was then extended [Mel- 
lor, 1973] to include temperature (or any scalar) such that 

<• •0> : __ q_• (ujO> (6, Oxj 312 

(a + v) ( øuj ø0 ) XOx• 0'•-• = 0 (7) 
where a is the thermal diffusivity. The temperature variance 
dissipation is 

2a • = 2 (02) (8) Oxk •22 
where (02) is the temperature variance and 12 and A2 are 
length scales. 

To complete the model, we must add closure expressions 
for (ukuiuj), (puj), (uiujO), and •0). The choice is ambiguous, 
as discussed by Mellor and Herring [1973] and Mellor [1973]. 
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However, we chose 

O(!,lillj) O(!,lillk) (llkllillj) = • lq Sq q- • 
Ox•, Oxj 

{u•,uyO) = -lq S,,,o Oxj 

+ I 
OXi 

(9) 

o<uo) ) + (10) 

{ut, O 2) = - lq So (11) 

to model what we shall call the turbulent velocity diffusion 
terms. Sq, Suo, and So are dimensionless numbers which 
might be absolute constants or functions of invariant param- 
eters. 

Consistent with the above, one might reasonably specify 
(pO) = O, since there is no zero-order tensor involving a 
gradient of a scaler, and also specify (pui) = lq Sq' Oq2/Oxi. 
The problem is that the relative roles of velocity diffusion 
versus pressure diffusion do not seem to be understood 
experimentally. However, within approximations made in 
section 3, the important part of (9) is seen to be (uk/,/i 2) = lq 
Sq Oq2/Oxl½. Thus the pressure and velocity diffusion terms are 
hardly distinguishable; that is, the present model would 
probably not discriminate between the two types of diffusion 
for all of the cases discussed in this paper. To reduce 
nomenclature, we will here formally set Sq' = 0, but it must 
be stated that we do not know how the model (or, apparent- 
ly, real data) divides the total diffusion into its two separate 
parts. There will be more discussion on this point in section 7 
relative to the free convection problem. 

Despite the uncertainty connected with model equations 
for turbulent diffusion, it is probable that the concomitant 
error in predicting mean properties is not large. 

It is fundamental to current second-moment models (and, 
perhaps, their greatest weakness) that all length scales be 
everywhere proportional to each other. Therefore we set 

(ll, A1, 12, A2) = (A i, Bi, A2, B2)I (12) 

where I is the master turbulent length scale. The constants 
A•, B•, A2, B2, and C• must be determined from data. This 
can be accomplished without resort to a trial and error 
process (sometimes termed 'computer optimization') by 
appealing to data where turbulent energy production and 
dissipation are balanced. This will be discussed later, as well 
as means to determine I. The remaining unknowns are Sq, 
Suo, and So, although we note here that up to the present time 
they have been set equal to each other. 

Higher-order terms (see definition of 'order' in section 3) 
can be added to the above closure approximations [Launder 
et al., 1975; Launder, 1975; Wyngaard, 1975]: for example, 
to equation (4) one could add 

C2(Pikkj q- Pjkki- (2tiO'/3)P!•l) + C3(Pikjk q- Pjkik 

- (2tiO./3)Pl•,,,) + C4•(gi(lljO) q- gj•lliO) -- (2tio./3)g•,(u•,O)) 

where Pij•m -- -(uiuj) OUdOxm; to equation (6) one could add 

Csgj{[•O 2) + C6(Otlk) 0 Sk/OXj + C7(Otlk) 0 Uj/OXk 

In a rotating flow, other terms containing the rotation vector 
can be added along with other higher-order terms [Lumley 

and Khajeh-Nouri, 1974]. Additionally, in the vicinity of 
walls, terms involving a unit vector •k i normal to a wall could 
be included [Monin, 1965]. However, we have resisted 
added complexity for the following reasons: (1) Melior [1973] 
found that the above model met with immediate success in 

predicting the very dramatic, stabilizing or de stabilizing 
effects of density stratification in a gravity field. Similar 
effects of flow curvature were equally well predicted. (2) The 
data base is not sufficient or accurate enough to determine 
many constants. (3) We are motivated to minimize complex- 
ity and the number of empirical constants. (4) The weakest 
link in our model (and all other active models) is probably 
the length scale equation (section 5) rather than the closure 
assumptions (4)-(11). 

Thus the model represented by (4)-(12) is relatively sim- 
ple. Our expectation of the model is that it will accurately 
predict mean velocity and temperature fields and do a 
reasonable job of estimating turbulent variances and covari- 
ances. 

The Level 4 Model 

Now f the closure assumptions are inserted into the mean, 
turbulent moment equations (contained in many of the 
references cited in this paper), the model which we had 
labeled the level 4 model [Melior and Yarnada, 1974] is as 
follows: 

[ (O(lliUj) O(llillk) O(lljllk))] D(ttittj) 0 -• lq Sq q- • + - 
Dt Ox• [ OX k OXj OX i 

- 311 -•- + C•q2 Oxj _ 2_ Oxi 3 A• 

ou. oui 
--{llklli) c]X•-- {llkllj) OX•-- [•(gj•lliOø} q- gt•ujOo}) 
-- f k(t•jkl(ttltti) + Eikl(ll!llj)) (13) 

D{ujO) 
Dt 

0 lq Suo + 
Ox•, Ox•, Oxj 

oo 

= (-uju•} Ox'--• {Ou•) Ox-•-- flgj 
q 

- • {ujO) - ft, ejt, l(UlO) (14) 
3/2 

0(o) 2 ] 0o e( 0 2) D(0) 2 0 lq So = -(2u•O)•- 2• (15) 
Dt Oxt, Oxt, Oxt, A2 

In the above equations we distinguish 0o from 0 where the 
former always appears in combination with/3, thus repre- 
senting a density fluctuation. However, for most of the 
discussion in this paper we let 0o = 0, in which case the 
above equation set is closed. Later, however, we will 
consider atmospheric problems where water vapor and 
liquid must be included in the equation of state and oceanic 
problems where salinity is an important factor; then 0o and 0 
will acquire separate identities. 
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The Level 3 Model 

SIMPLIFIED MODELS 

Although we have used the complete model in the numeri- 
cal solution of problems [Melior and Yamada, 1974, Briggs 
et al., 1976], it is generally too complicated for practical 
application to most geophysical fluid dynamics problems. As 
discussed later, the model must be extended to include other 
scalar quantities besides temperature (in the atmosphere, 
water vapor and liquid water along with other chemical 
constituents; in the oceans, salinity and other chemical 
constituents), and the numerical effort can quickly get out of 
hand. 

A process of simplification has been described by Melior 
and Yamada [1974] in some detail. Briefly, it involves 
scaling all terms in the model equations as a product of q3/A 
and powers of a, where A = O(A•) and a 2 = O(a(?); a u is the 
nondimensional measure of anisotropy in the expression 

Similar parameters are introduced for the temperature varia- 
bles. We then evaluated terms in (13), (14), and (15) in 
powers of a and eliminated terms of order a 2. All of this is 
suggested by the kinetic theory of gases, wherein a is related 
to the Knudson number and is generally a very small 
number. For turbulent flows, a/? = 0.15 and is not overly 
small. Nevertheless, the procedure contributes some disci- 
pline to the process of simplification and provides a self- 
consistent model. What we have called a 'level 3' model 

[Melior and Yamada, 1974] is as follows: 

Dq 2 0 [lq Sq Oq21 Dt Oxk O--•-ff J = 2(Ps + Pb- E) (16) 

ou. 150 q2 _ 3l__L (u•ui)• + (u•uj) • + • 15 O. Ps (llillj) = T q OX• OX• 

_ Clq2 ( 0Uj Oxi 
O Ui I + 13gj{ujOo} + •gi{ujOo} + -• 15• Pb 
Ox• / 

+ fk(t•jkl(tlltli) + eikl(tlltlj))] (17) 

(ujO) 3/2 [(ujut•) O0 OUj .... + 
q Oxk Oxk 

q- •gj{OvO} q- fk Ejkl (lllO}] 
D( O 2) 0 [ O( 02)_] O0 2q lq So = -2(ukO) (02) 
Dt Oxk -•xk ] Oxk A2 

where 

Ps --= --(llillj) O Ui/OXj 

is the shear production of turbulent energy, 

Pt, = --[•gi(lliOv) 

(18) 

(19) 

(20a) 

(20b) 

is the buoyant production, and 

e = q3/A• (20c) 

is the model dissipation. 
(A mistake was made in the paper by Mellor and Yamada 

[1974]. The last term in their equation (21) and subsequent 
terms labeled D• q2 in (52 a, b, c) and Df in (55 a, b) and (56) 
should be purged, since they are of order a 2. The mistake is 
embarrassing, since the original purpose of the ordering 
analysis was to eliminate terms.) 

The Level 2« Model 
Subsequent to the Mellor and Yamada [1974] paper a 

further modification has been made to the level 3 model, the 
result of which is hereby labeled the level '2«' model. 

The modification is to neglect the material derivative and 
diffusion terms in (15) or (19). This modification immediately 
removes the need to solve one differential equation but also 
is consistently applied to extensions where, say, water vapor 
(or salinity in the case of oceanic application) is added to the 
list of variables. Without the modification one would need to 

solve differential equations for temperature variance and 
water vapor variance and an equation for the cross correla- 
tion of water vapor and temperature. The situation quickly 
gets out of hand if more scalars are added to the list of 
computed variables. This change is not generally justified by 
our ordering analysis. However, a close reexamination of 
the ordering analysis indicates that the modification can be 
justified for all stable flows and slightly unstable flows; error 
is more likely as one approaches the free-convection limit. 
Nevertheless, our practical experience indicates that the 
modification should exert little effect on computed results. 

We therefore replace (19) by 

A2 00 
( o 2) = - (uO) (2 l) 

q Oxk 

The Level 2 Model 

This model neglects all material derivative and diffusion 
terms. Thus (16) is replaced by Ps + Pt, = e and, further, 
consists of (17), (18) (which can be further simplified by the 
production-dissipation balance), and (21). 

We note that a level 1 model was also identified by Mellor 
and Yamada [ 1974]. However, it fails to reproduce observa- 
tional data (as in Figures 5a and 5b) and does not offer 
significant, compensatory mathematical simplification. 

The Boundary Layer Approximation: Level 2« 
For all subsequent versions of the model we will neglect 

the Coriolis term in the turbulence moment equation. This 
appears to be justified in boundary layers where lf/u, is 
small. (However, the issue probably should be investigated 
more thoroughly.) Note that if the Coriolis terms were 
retained, algebraic simplification of the type to be presented 
in this section does not appear possible; a large matrix 
inversion is required to obtain the fluxes for insertion into 
the mean equations of motion, (2) and (3). 

Now, if one makes the boundary layer approximation, the 
vertical component of the momentum equation becomes 
hydrostatic, and in the other equations, all components of 
the tensor, OUfiOx•, may be neglected except for OU/Oz and 
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OV/Oz. Then, if we set gi = (0, 0, -g), (2) and (3) simplify to 

D 0 
• U + • p(uw) = -OP/Ox + pfV (22a) P Dt Oz 

D 0 
• V + -- p(vw) = -OP/Oy - pfU (22b) P Dt Oz 

0 = -oP/Oz- pg (22c) 

(DO/DO + (O(wO)/Oz) = 0 (23) 

Although all model levels are simplified by virtue of the 
boundary layer approximation, levels 2« and 2 are most 
advantageously affected. Here we proceed with discussion 
of the level 2« model. Thus (16), after the boundary layer 
approximation, is 

Dt -•zz lqSq•-z = Ps + Po- e (24) 
where now 

OU OV 

Ps =-(wu) •Z (wv) OZ 
Pb = fig{wO)o 

e = q3/A1 

Equations (16), (17), and (18) may now be written as 

q2 ll -4(wu) JZ OZ =•+-- +2(wv)•-2Pa (u2) 3 q 

(25a) 

(25b) 

(25c) 

q2 ll[ OU = -- + - 2(w•> • (v2) 3 q 4(wv) •- 2Pa 
Oz 

(26) 

q2 ll[ OU = -- + - 2(w•> •zz (w2) 3 q + 2(wv)• + 4PB 
Oz 

(uv) = 311 [_(uw) OV OU] 7 7z 

ou (wu) = 31_[ _((w2) _ Clq2 ) + (27) 

OU (wv) = 31• -((w2) -- Clq2) •z q + t•g(voo 1 
{uO} = 312 [-{uw} O0 O-•Z ] T Tz <wo> 

<vO) = 312 [-<vw> O0 O--z l T 7z <wo> (28) 

(w0)=312 [ -(w2) O0 -•- • + 
A2 00 

(o 2) = - • (wo) 
q oz 

(29) 

If we further define 

and 

-(uw) = KM OU/Oz (30a) 

-(vw) = KM O V/Oz (30b) 

-(Ow) = KH O0/OZ (31) 

K• = lq S• (32a) 

KH = lq SH (32b) 

12 [(OU/2 + (OVI2] (33a) 
12 00o 

- (33b) q Og oz 
then (26), (27), (28), and (29) after considerable algebra 
reduce to 

Sju[6AiA2G•] + Su[1 - 3A2B2Gu- 12AiA2Gu] = A2 (34) 

S•[1 + 6A•2G• - 9AiA2Gn] - Sn[12A•2Gn + 9A•A2Gn] 

= A•(1 - 3C•) (35) 

which are readily solved (however, see discussion in section 
6) for S• and Su as functions of G• and Gn. From the 
definitions (25a•(25c) and equations (30•(33) it may be 
shown that 

(P• + PD/e = B•(S•G• + S•n) (36) 

Looking ahead somewhat, contour plots of S•, Sn, and 
(P• + PD/e versus G• and Gn are exhibited in Figure 3 after 
the empirical constants were detemined. 

Expressions for turbulence variances may be obtained. 
For example, the ve•ical velocity variance is given by 

(w2)/q 2 = • - 2A•S• + 4A•S•n (37) 

It is useful for later discussion to also write S• and Sn as 
functions of Gu and (P• + PD/e. Thus using (36) to eliminate 
G• from (34) and (35), we obtain 

[ S•[1 - (3A2B2 + 18AiA2)Gu] = A2 1 • 
B• e 

(38) 

SM[1 -9A1A2GH] - SH[(18A12 + 9AiA2)GH] 

6A1 Ps + Pb.] A1 1 - 3C1 (39) 

The Boundary Layer Approximation: Level 2 
A lower-order model is the level 2 model of Melior and 

Yamada [1974], wherein the material derivative and diffu- 
sion terms in (16) and (19) are neglected so that production is 
balanced by dissipation. The level 2 model may be applied 
(to fairly good approximation it would appear) to an entire 
boundary layer but also applies rigorously in the limit as the 
surface is approached (and buoyancy effects vanish). Bound- 
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Fig. 1. Longitudinal turbulent intensity in a pipe as obtained by 
Perry and Abell [1975]. The horizontal line is the estimated outer 
asymptote of the inner function (law of the wall coordinates). The 
Reynolds number is based on the pipe diameter. 

ary conditions for the higher-order models are obtained from 
the level 2 model. 

If the boundary layer approximation is made and applied 
to (17), (18), and (21) after further simplification by virtue of 
the production-dissipation balance, then it is possible to 
obtain algebraic relations for Sa4 and Sa as functions of 
either flux Richardson number (see Figure 4) 

Rf = -Pb/Ps (40a) 

or gradient Richardson number 

gl3 O0/Oz GH SM 

Ri = (OU/Oz)2 + (OV/Oz)2 - Giu SH Rf (40b) 
The resulting relations are 

71- (71 + 72)Rf 
SH = 3A2 (41a) 

1- Rf 

A• B•(7• - C0 - [B•(7• - C0 + 6(Al + 3A2)]Rf 
SM = • SH 

A2 

where 

B171- [Bl(71 + 72)- 3A1]Rf 

(4lb) 

71 • -13 -- (2A1/B1) (42a) 

72 = (B2/B1) + (6A1/BO (42b) 

As seen in (41a) and (4lb), a critical Richardson number, 
where &u = $H = 0, is obtained when Rf = 7•/(7• + 72). 
After evaluation of the constants A1, B1, and B2 we will find 
that the critical Richardson number is 0.19. 

Other quantities such as (u2)/q 2 and (v2)/q 2, may be ob- 
tained from (29)-(32) as functions of Richardson number. 

We note that (41a) and (4lb) may also be obtained from 
(33b), (38), and (39). First, set (Ps + Pb)/e = 1 in (38) and 
(39). Then eliminate q2 in (33b) using, again, q3 = Ale = 
Al(Ps + Pb). 

4. THE EMPIRICAL CONSTANTS FROM NEUTRAL DATA 

As stated previously, the constants A1, B1, A2, B2, and C1 
can be determined without resort to a trial and error process 

by appealing to data where turbulent energy production and 
dissipation are balanced. This occurs in the overlap (law of 
the wall) region near walls and in homogeneous shear flow 
data where diffusion is zero and where at some downstream 

point in the flow it happens that Oq2/Ox = O. 
Mellor [1973] had previously determined that (A•, B•, A2, 

B2, C0 = (0.78, 15.0, 0.79, 8.0, 0.056). In this paper we have 
exerted more effort in collecting and interpreting data; 
hopefully, these results will also be useful to other modelers. 

Interpretation of wall data to extract large Reynolds 
number results requires some care. We wish to correctly 
identify the outer (inviscid) asymptote of the 'inner,' viscous 
wall functions (law of the wall coordinates) which describe 
the various turbulent flow properties and which will match 
with the inner asymptotes of the 'outer' functions. It is the 
outer functions which our model is supposed to simulate. 
The large Reynolds number asymptotic behavior of turbu- 
lent wall flows has been discussed by Yajnik [1970] and 
Mellor [1972]. Perry and Abell [1975] have provided a nice 
experimental illustration of the matter, which we repeat here 
in Figure 1. It is seen that we need to determine a quantity 
like u'/u• -• (u2)l/2/u•., where y+ = yu/v = 60 and where 
-(wu) = u• 2 = const. In general, data are not as well 
resolved in the near-wall regions as in Figure 1. Therefore 
there is likely error in interpretation. However, it is believed 
that this kind of error is considerably smaller than the 
variations among the different data sets related to measure- 
ment error. 

The values for turbulent velocity variances are collected in 
Table 1, and those for turbulent thermal variances in Table 2. 
In Table 1, aside from Reynolds number and udUo, the 
independent data may be thought to be u'/u. v'/u. and w'/ 
u.; the remaining two quantities are derived. In Table 2, 
-(wO)/UoAO, O'/AO, and Prt are independent, whereas the 
remaining two variables are derived. 

We now simplify the model equations to the conditions 
governing the data in Tables 1 and 2, namely, that the flow is 
two dimensional, production equals dissipation, -(uw) -- u. 2 
= const, -(0w) -- H = const, and buoyancy effects are 
negligible. We next stipulate that 

OU/Oz = udl (43a) 

which constitutes a partial definition of l; that is, any further 
prescription of l(z) must be constrained so that l = Kz near 
solid surfaces f the model is to reproduce the logarithmic 
law of the wall. Thus the 'master length scale' l is defined so 
that it is coincident with Prandtl's mixing length near solid 
surfaces, although it is here presumed to play a much 
broader role. A definition of turbulent Prandtl number Prt = 
Kiu/Ka and (30a), (31), (32a) and (35b) yield 

OO/OZ = (H/ltO(Prt/l) (43b) 

Note that the turbulent Prandtl number will vary with 
stratification; in this discussion, only the neutral value is 
considered. Setting l = Kz, where • = 0.4, and integrating 
(43a) and (43b) will yield laws of the wall equations for 
velocity and temperature, respectively. 

Flows where production equals dissipation necessarily 
include flows near solid surfaces. Then q3/A 1 = -(uw) OU/ 
Oz, and from (43a) and (12), 

q3 = BlUr3 (44a) 
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TABLE 1. Observed Values of Turbulent Velocity Variables Where Production Is Balanced by Dissipation 

UoX/v 10 -4 u•/Wo u'/u. o'/u. w'/u. q/u,. (uw)/u'w' 

Pipe 
Laufer [1954] 25.0 0.0346 2.2 1.70 1.00 2.95 0.45 
Perry and Abell [ 1975] 12.8 0.0370 2.12 1.03 0.46 
Bremhorst and Bullock [1973] 3.5 0.0398 1.9 1.26 .0.42 

Channel 

Laufer [ 1950] 3.1 0.0377 1.88 1.19 1.03 2.45 0.52 
Laufer [1950] 6.2 0.0367 1.74 1.14 1.03 2.32 0.55 
Comte-Bellot [1965] 2.3 1.30 1.03 2.8 0.42 

Boundary Layer 
Klebanoff [ 1955] 7.4 0.0377 2.02 1.41 1.03 2.66 0.48 
So and Melior [1973] 2.0 0.042 1.70 1.18 1.00 2.30 0.58 
Young et al. [1973] 

Flat surface 4.6 0.039 2.25 1.15 0.39 
Wave surface 5.1 0.042 2.4 1.3 0.32 
Wave surface 8.8 0.049 2.4 1.3 0.32 

Homogeneous Shear Flow 
Rose [ 1966] 0.0066 1.66 1.35 1.26 2.48 0.48 
Champagne et al. [1970] 0.0105 1.70 1.29 1.20 2.45 0.49 

Primes respresent rms values and u• 2 = (uw). Uo is either the centerline velocity or the mainstream velocity. X represents pipe radius R, 
half channel width h, or boundary layer thickness/5. 

Under the present constraints, equations (26) reduce to 

(u 2) = (1 - 2y1)q 2 

(0 2 ) = (W 2) = 3tlq 2 

where •1 was previously defined in (42a) and 

1 
C1 = 3q B11/3 

(44b) 

(44c) 

(44d) 

Al(3q - C0 
A2 = (44e) 

'Y1Prt 

B11/3 /,/•.2( 02 ) 
B2 = (44f) 

Prt H2 

We must choose values of B1, 3'1, Prt, and B2 from Tables 1 
and 2. It is not a simple choice, and perhaps the principal 
value of the tables is to show that some uncertainty exists; if 
we bias our choice toward one set of data, that set will be 
predicted well, but another set may not be. For example, 
there is an obvious difference between the wall data and the 

homogeneous shear flow data. 
The first choices we have made are B1 = 16.6 and 3'1 = 

0.222. From (42a) and (44d) we obtain A1 = 0.92 and C1 = 
0.08. From (44a)-(44c) this yields q/u• = 2.55, u'/u• = 1.9, 
and v'/u• = w'/u• = 1.2. The fact that v' and w' are equal is 
not supported by the data, and as discussed earlier, the 
model could be complicated to permit v' • w'. The choice of 
additional terms is not clear, however, and the further choice 
of the additional constants they would introduce would be 
less clear. 

The choice of turbulent Prandtl number is quite ambiguous 
from Table 2. This quantity has been measured by others 
besides those listed in Table 2. A 1961 survey [Kestin and 
Richardson, 1961] infers that near a smooth wall, 0.74 < Prt 
< 0.92. Gowen and Smith [1968] obtain 0.8 < Prt < 1.0 for 
smooth pipes and 1.0 < Prt < 1.2 for rough pipes at a radius 
Reynolds number of 20,000. (For large enough Reynolds 
number, Prt should not depend on roughness.) Atmospheric 
boundary layer data, to be discussed below, indicate Prt -- 
0.74 in the neutral case. Here we choose Prt = 0.80, SO that 
(44e) yields A2 = 0.74. Finally, we choose B2 = 10.1. Using 
(44f), this yields ll,r2(O2)/(WO) 2 = 3.1, which may be com- 
pared with the corresponding data in Table 2. Perhaps it is 
better to consider the correlations (-(uw))/(u'w') and 
(-(wO))/(w'O') which can be calculated from the above 
constants and equations. We obtain 0.44 and 0.42 for com- 

TABLE 2. Observed Values of Turbulent Thermal Variables Where Production is Balanced by 
Dissipation 

UoX/v 10 -4 (wO)/UoAO O'/AO Pr, (wO)/w' O' U?2( O2)/(wO) 2 

Pipe 
Bremhost and 

Bullock [1973] 3.5 0.0020 0.102 0.41 3.0 

Boundary Layer 
Young et al. [1973] 

Flat surface 4.6 0.0015 0.075 0.95 0.46 3.8 
Wave surface 5.1 0.0032 0.12 0.55 0.48 2.48 
Wave surface 8.8 0.0035 0.11 0.55 0.50 2.37 

Primes represent rms values. AO is either the centerline or the mainstream temperature minus the 
wall temperature. X represents either pipe radius R or boundary layer thickness/5. 
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Fig. 2a. Data by Uberoi [1957] for a homogeneous anisotropic 
flow. The dashed lines are faired through the data points, whereas 
the solid lines are model generated. 

parison with those data. It should also be noted thai similar- 
ity considerations yield B2/B• = 2/3 for decaying, homoge- 
neous temperature and velocity fields [Hinze, 1975, p. 300], 
which apparently agrees with the measurements of Gibson 
and Schwartz [1965]. However, these measurements cover a 
rather short decay history. 

Summarizing, we find now that 

(A•, B•, A2, B2, C•) = (0.92, 16.6, 0.74, 10.1, 0.08) (45) 

which differ just a bit from values cited previously which 
were evaluated with less information. 

Uberoi's Experiment 

All of the results above were obtained independent of a 
prescription for l(x). Proceeding in the same vein, we turn to 
experiments performed by Uberoi [1956, 1957] whereby 
near-homogeneous, anisotropic turbulence was created in a 
wind tunnel by the combination of a turbulence-producing 
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Fig. 2b. The solid straight line is obtained from (4) and (20c) and 
the slope is -B•/(6A •) = 3.00 as obtained from (45). The open circles 
and squares are from Uberoi [1957], whereas the crosses are from 
Uberoi [1956]. 

grid followed by a tunnel cross-sectional area contraction 
resulting in an initial condition where (w 2) = (v 2) > (u2); x 
and (u 2) are the coordinate and turbulence energy compo- 
nent in the tunnel flow direction. The governing equation for 
<u2>, <v2>, <w2> is 

0(u.2)/2 (p OU. • e U•= a=x,y,z 
Ox Ox. / 3 

We use Greek subscripts to denote suspension of the sum- 
mation convention. Note that we assume that the dissipation 
is isotropic; but that is the only assumption necessary to 
reduce the data so that it is very nearly a direct test of 
Rotta's hypothesis. Measurements of <u2>(x) and <v2> = 
(w2>(x) from Uberoi [ 1957] are plotted in Figure 2a. Values of 
(u2> and (v2> = (w2> are obtained at each data point location 
but from the smoothed curve passed through the data by 
Uberoi (dashed line). From these data and the above equa- 
tion it is possible to obtain values of (p Ou/Ox>, (p Ov/Ox), and 
e as functions of x. Thus in Figure 2a we plot the ratios (p Ou/ 
Ox>/(d3) and (p Ov/Ox)/(d3) (to eliminate length scales) as a 
function of (u 2 - q2/3)/(q2/3) and (v 2 - q2/3)/(q2/3), respec- 
tively, to compare with 

(p OUo, • / B2 (uot2> - q2/3 Ox,//(d3) = 6A• q2/3 (46) 
which may be obtained from (4) and (5). The results are 
presented in Figure 2b as circles and squares along with the 
straight-line plot of (46) where, using the constants previous- 
ly obtained in (45), we determine that B•/(6A•) = 3.00. 

We now note that the solid line in Figure 2a is a model 
prediction which embodies (46) but also requires a length 
scale prescription. While in this section we do not yet wish 
to emphasize the latter, the solid curve is a useful reference 
to emphasize that small error in data as plotted in Figure 2b 
would result in apparent large error in Figure 2a, particularly 
near the origin of Figure 2b; this region of small anisotropy is 
where we would most likely expect Rotta's hypothesis to be 
valid. 

On the other hand, the reader will observe data (crosses) 
for larger anisotropy which departs significantly from Rotta' 
hypothesis. The departures seem overly abrupt. Neverthe- 
less, the abscissa values, -1.0 and 0.5, in Figure 2a repre- 
sent the limits for two-dimensional, axisymmetric turbulence 
where (v 2) = 0 and (u 2) = (w2). At these limits one should 
anticipate that Rotta's hypothesis might fail. In fact, it 
appears from Figure 2a that it fails when the smallest 
component is (v2)/(q 2) = O. 12. 

The grid Reynolds number for the Uberoi experiments 
was 12,000 and therefore not very large. Corroborative 
experiments are not available. Nevertheless, the principal 
results support Rotta's hypothesis, support the choice of 
empirical constants (obtained from entirely independent data 
where production and dissipation balance), and place a limit 
on the range of applicability of Rotta's hypothesis. 

5. STABILIZATION BY DENSITY STRATIFICATION AND 

FLOW CURVATURE 

The model has not yet been described completely, but 
enough has been determined to demonstrate the surprising 
capability of the model to predict the stabilization of turbu- 
lent fields by density stratification and curvature. The data 
obtained by So and Melior [ 1973] were a clear demonstration 
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Fig. 3. The stability functions S•(Gx, GM) and Sn(Gx, GM). The heavy solid lines are contours of S•, whereas the 
dashed lines are contours of Su. The lighter solid lines are contours of (Ps + Pb)/•. One could also draw lines of constant 
R i = Gu/G•, which are radial lines on this diagram. The shaded portion is where (w2)/q 2 •< 0.12. 

of the fact that stabilizing curvature could literally extinguish 
turbulence. The effect of curvature as predicted by the 
model has been described by So [ 1975] and Melior [ 1975] and 
was important corroboration that the model could predic- 
tively extend far beyond the neutral data on which it is 
based. However, this paper is meant to emphasize geophysi- 
cal fluid problems, for which we will shortly turn to the near- 
surface, atmospheric boundary layer data of Businger et al. 
[1971]. 

Using the constants in (45), the level 2« functions, $•(G•, 
Ga) and $•G•, Ga), are plotted in Figure 3 from (34) and 
(35). Contours of (P• + P•)/• are also plotted. As the limit Ga 
- 0.0338 is approached, we find that $a • •. In principle 
this means that gradients such as 00/0z will be mixed out 
with an indefinitely large value of Ka such that Ga cannot 
exceed the limiting value. On this graph one can identify 
probable limits to the model's validity. The upper right 
portion of Figure 3 is a region where (W2)/q2 • 0.12, 
representing (approximately) a region where Rotta's hypoth- 
esis is probably invalid. Dickey and Melior [1980] have found 
experimentally that for stratified homogeneous, decaying 
turbulence the point G• - 0, Ga-• -0.4 is reached where 
the initial turbulence is converted into an ensemble of 

internal waves which decay very slowly (or, probably, not at 
all in the limit of large Reynolds number). We therefore 
know that (5) is no longer valid, and this is probably true for 
the other modeling assumptions. This may not be a serious 
deficiency, since the model should produce very low turbu- 
lence levels and little mixing for the aforementioned values 
of G• and Gw 

Figure 4 (corresponding to the cross section given by (P• 
+ P•)/• - I of Figure 3) is a plot of the level 2 functions 
$•(Rf) and $•Rf) from (41) and (42). A critical Richardson 
number Rf = R• - 0.19 is obtained beyond which $• - $a - 
0. 

For the purpose of direct comparison of data with model 
prediction we apply the level 2 model where all material 
derivative and diffusion terms in the turbulent moment 

equations have been neglected. This should be a valid 
simplification near surfaces, at least for neutral and stable 
flows. For near-surface flows we also assume I -- kz. The 

data are cast in Monin-Obukhov similarity form, 4•(•), 
•b•), where 

KZ OU 
•bM --= - [Bl(1 - Rf)SM3] -1/4 (47a) 

u• OZ 

•bH --= •u, 00 _ [Bl(1 - Rf)s•n/sM] -1/4 (47b) 
H Oz 

z 

• • Un.31(Kg[•H) -' C•MRf (47c) 
and where u• 2 = ((uw) 2 + (vw)2) 1/2 and H = -(wO) near the 
surface. 

Figures 5a and 5b compare the model results with the data 
ofBusinger et al. [1971]. Note that the point Rf = Rfcr = 0.19 
in Figure 4 is mapped into the straight lines in Figures 5a and 
5b as [ --• oo. Note also that the prediction of Rfcr does not 
depend on l(z). 
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Rf 

Fig. 4. The stability functions S• and Su as a function of flux 
Richardson number corresponding to the condition (Ps + Pb)/e = 1 
of Figure 3. 
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point correlation function to supply an equation for the 
master length scale. The closure assumptions are complicat- 
ed, and we consider the result less convincing than the 
previous assumptions and more likely to be amended in the 
future. The version we have used for some time (see Melior 
and Herring [1973] for a general discussion) is 

•(q I) - OZ[ •ZZ (q2/) = IE,[Ps + 
1 + E• (48) 

B] 

For neutral, homogeneous, decaying grid turbulence where 1 
is much smaller than L, (48) along with (26) predicts the 
initial period decay law, q• oc t-•. Sl, E], and E• are empirical 
constants to be determined. Po might be preceded by anoth- 
er constant ff data can be found to unambiguously suppo• a 
value other than unity. 

L is supposed to be a measure of the distance away from 
the wa• as is specified according to 

1 ff dA(ro) L-•(r) = • [r- ro] 3 (49) 
which is similar to ideas offered by Shir [ 1973] and Launder 
et al. [1975]. Here r is any point in the fluid domain bounded 
by solid wall at r0; dA(r0) is an elemental wall area. For a 
boundary layer flow near an infinite plane wall, L = z; for 
channel flow, L-• = z-• + (2h - z)-•, where 2h is the 
distance separating the channel walls. It can, by the way, be 
shown that a third term on the fight of (48), here represented 

The fact that the basic model has the predictive capability 
of extrapolating neutral data into stratified regimes was 
probably the most important finding [Melior, 1973] in the 
development of the model. 

Lewellen and Teske [1973] have also shown a favorable 
comparison of their model with these data. They included 
the diffusion term and did get better agreement than we did 
for 4•M in the unstable region where diffusion is liable to be 
important. However, they had to insert a specific Richard- 
son number parameterization into their model to obtain the 
correct critical Richardson number. Gambo [1978] also 
obtained improvement in 4•M in the unstable region by 
including buoyancy terms in (4) in a manner described at the 
end of section 2; however, agreement with the stable data for 
both •b• and •bH was not as good as that shown here. 

It should be noted that the Businger data were also 
evaluated to yield avon Karman constant K of 0.35, some- 
what less than the more commonly accepted value of 0.40. 
Wieringa [1980] discusses the issue, reevaluates the data 
taking into account tower interference, and argues in favor 
of the value 0.40. The later value is used throughout this 
paper. 

6. Tile TURBULœNT LœNGTil SC^Lœ EQUATION 

We have postponed consideration of the equation for the 
master length scale I so that the other elements of the model 
were first justified on the basis of neutral data and a direct 
test of the model's predictive power, that is, the prediction 
of turbulent stabilization in a density-stratified flow. The 
factor Sq in (24) must also now be determined. 

Following Rotta [1951], we use the integral of the two- 
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Fig. 5b. Comparison of the temperature profile data of Businger 
et al. [1971] with predicted values (solid curve). Insert is detail near 
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by (q3/B1)E 2 (I/K.L) 2, is absolutely necessary, but the one 
chosen here is one of several alternatives [Ng and Spalding, 
1972; Wolfstein, 1970; Melior and Herring, 1973; Lewellen et 
al., 1976; Rotta, 1973]. All one can say in the present case is 
that, as we will see, it works well. 

While one cannot assert great confidence in (48), we prefer 
it rather than the differential equation for dissipation [Daly 
and Harlow, 1970; Hanjalic and Launder, 1972; Lumley and 
Khajeh-Nouri, 1974]. The dissipation transport equation is 
an equation for the curvature of the two-point, velocity 
correlation function as the separation distance approaches 
zero (for large Reynolds number, the transport terms, per se, 
are negligible, as shown by Tennekes and Lurnley [1972]). 
Alternatively, it is an equation for the integral of the spectral 
density function after multiplication by the square of the 
wave number, thus weighting the integral so that large wave 
number and small-scale turbulence are emphasized. Thus it 
seems fundamentally wrong to us to use an equation which 
describes the small-scale turbulence to determine the re- 

quired turbulent macroscale. Operationally, however, after 
some terms are modeled, the dissipation transport equation 
is a special case of a more general length scale equation 
[Melior and Herring, 1973; Lewellen et al., 1976]. 

In subsequent discussions we will mention some calcula- 
tions using the level 2 model and an algebraic expression of 
the form 

kz Izlq da 
•= •0• to-=. (50) 

kz + lo fo• •t dz 

u 

q 

1.0 

I• OI 0•• O•xO-O 
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Fig. 6. Channel flow. Comparison of predicted mean velocity 
and turbulent intensity (solid lines) with data by Lauffer [1950] and 
by Hanjalic as recorded by Launder et al. [1975]. The circles are 
Lauffer's data. 

in place of (48). For boundary layers this works well, but it is 
limited to boundary layers, and the empirical constant a 
would depend on the type of layer, for example, a boundary 
layer as in Figure 7 or an Ekman layer. Some studies actually 
simplify (50) further so that I = 10. This will not produce a 
logarithmic velocity behavior near surfaces. However, for 
the case of an ocean surface mixed layer the additional 
simplification does not seem to impact mixed layer deepen- 
ing or temperature. 

Boundary Conditions 

We have postponed stipulation of boundary conditions 
until this time when the complete set of model differential 
equations are available. 

For the mean velocity and temperature boundary condi- 
tion near a surface at z = z0, one either specifies stress and 
heat flux, 

-<wui>(x, y, zo) = roi "• (qlSM OUdOz) z -• zo (51) 

-(wO)(x, y, Zo) -= H --• (qlSn O0/Oz) z --• Zo (52) 

or, near solid surfaces at rest, the numerical solution is 
matched to 

U,(x,y z) roi in(Z-Z0) , '-• z --• z0 (53a) 
Ki• ZMS 

O(x, y, z) - O(x, y, z0) '-• In (53b) 
Ki• ZHS 

z• Zo 

where //•.2 = (•.0i2)1/2, i = X, y, and ZMs and zns are the 
roughness parameters; for smooth surfaces, z•sudv = exp 
(-4.9K), whereas zns/z•s is a function of Prandtl number. 

Asymptotically close to surfaces, all equations for the 
turbulence variances reduce to the level 2 algebraic equa- 
tions. Furthermore, the buoyancy production terms vanish. 
Thus for the level 2« model we have from (44a) 

q2(x, y, zo) = B12/3 u• 2 (54) 

to which we add 

q21(x, Y, Zo) = 0 (55) 

on solid surfaces. For free-stream conditions the mean 

velocity and temperature are specified. If the free-stream 
turbulence is known, that is specified. Otherwise, a very 
small value is used. Solutions are quite insensitive to free- 
stream values of q21. 

For the level 4 and level 3 models, additional boundary 
conditions are obtained from (26)-(29) after replacin g PB = 
O, OU/Oz = -(uw)/(Ku,.z), and OV/Oz = -(vw)/(•u,.z); some 
results are given in (44b) and (44c). 

Neutral Channel Flow and Boundary Layer Flow 

Calculations were made for channel flow and a constant 

pressure boundary layer to assess Sq, S! and El, E2. It 
became apparent that one should set St = Sq; otherwise the 
behavior of I in the center of the channel or at the edge of the 
boundary layer was unrealistic. To insure that I --• •z as z --• 
0, it may be shown that E2 = •2B1S! + E1 - 1. The values of 
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Fig. 7. Boundary layer. Comparison of the predicted mean veloci- 
ty and turbulent intensity with data by Klebanoff[1955]. 

Sq and El are then chosen to optimize agreement between 
model results and data at the center and outer edge of the 
channel and boundary layer, respectively. An agreeable 
result' wa• that the values Sq = 0.2 and E1 = 1.8 were 
optirhum for both flows. Thus we obtain (Sq, $1, El, E2) - 
(0.2, '0.2, 1.8, 1.33) and the predictions shown in Figures 6 
and 7: In both cases there is near-perfect agreement with 
measured values of -(uw)(z) and q(z). For the channel flow 
case the observed and calculated Reynolds stress distribu- 
tions are linear and are not shown. 

The outer free-stream turbulence level for the boundary 
layer flow has been set at q/u• = 0.07 as estimated from 
Klebanoff [1955], but this may be a bit low. Two boundary 
conditions for q21 have been specified and correspond to the 
calculated solid and dashed lines in Figure 7. 

The separate components u', v', and w' are not shown, 
since they do not enter into the determination of El. Agree- 
ment with data is quite good in this respect except that we 
predict v' = w' as discussed earlier. Away from walls this is 

in agreement with the data, but near walls there is some 
disagreement in accordance with Table 1. 

In unpublished work we have also calculated circular duct 
flow after (26), (47), and (48) are cast in cylindrical coordi- 
nate form, and these calculations compared favorably with 
the duct flow data of Laufer [1954]. 

This is perhaps an appropriate place to record the fact that 
we have had occasional difficulty with the level 2« model; for 
some model simulations a discontinuity in velocity could 
develop and persist. We will not detail the nature of the 
problem here except to note that its occurrence depends on 
the gpecifics of finite differencing. Thus it occurs when 
Reynolds stresses and mean velocities are staggered with 
respect to each other but not when these variables are 
located at the same grid points. It further occurs when (Ps + 
PoPe attains large values (unrealistically greater than 2) as, 
for example, when wind stress is impulsively applied to an 
ocean surface initially at rest with initially zero layer thick- 
ness. A modified level 2« model [Worthera and Me!lot, 1980] 
obviated the problem but required a complicated iteration. 
More recently, however, we have reverted to the original 
scheme (equations (26)-(29)) after we learned that the prob- 
lem can be avoided by constraining the domain of depen- 
dence of the Sw(GM, Gn) functions so as to exclude the 
regions where (w2)/q 2 •< 0.12 (the shaded region in Figure 3) 
and where, according to the discussion in section 4, Uberoi's 
data present reason to believe that Rotta's assumption fails. 
Of course, one might accordingly revise Rotta's hypothesis, 
but that step might better await further corroborative data. It 
would also complicate the model and, it is believed, unnec- 
essarily so for most practical pl'oblems. 

The constraint we use on (34) and (35) is Gn < 0.033 and 
G•4 -< 0.825 - 25.0 

7. FURTHER GEOPHYSICAL APPLICATIONS 

The models as described thus far, mainly in the context of 
one-dimensional simulations, have now matured sufficiently 
so that these form the basis for other one-dimensional 

investigations to compare model predictions with laboratory 
flows and to generate new information on boundary layer 
responses. The closure models have also been incorporated 
into larger, three-dimensional atmospheric and oceano- 
graphic numerical models. The following discussion will 
highlight some of these applications. 

Free Convection 

With no alteration in the model, level 2« calculations are 
performed to compare with the free-convection experiment 
Of Willis and Deardorff [1974] wherein a heat flux was 
imposed at the bottom surface of a tank of water after a 
linear temperature gradient had been established in the tank. 
Since there is no shear production, the Richardson number 
changes abruptly from +oo to -• at z = z•, the inversion 
height. 

The calculated temperature and heat flux very nearly 
overlie the data in Figure 8 and have not been plotted. A 
possible exception is that the small, negative flux overshoot 
near the inversion height, z = z•, is underestimated by a 
factor of 3 or 4. Note that the experimental heat flux was 
determined by integrating the temperature tendency and 
might be subject to error. 

The predictions of (w 2) and (02) in Figures 9 and 10 agree 
well with the data, whereas (u 2) does not. Furthermore, free- 
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Fig. 8. Mean temperature and heat flux profiles from the laboratory experiment of Willis and Deardorff [1974]. 
Calculated profiles were nearly coincident with these data. Open data points are atmospheric aircraft measurements in 
conditions thought to be similar to those of the laboratory experiment. 

convection scaling 'laws' where (w 2) oc (g•Hz) 2/3 and (0 •) oc 
H2(gl3Hz) -2/3 as z --• 0 are seen to prevail for these quantities 
but not for (u 2) as z --• 0. In other words, both the scaling 
laws and the model fail to represent (u 2) well near the 
surface. As discussed by Sun and Ogura [1980], a rational- 
ization for this finding is that (u 2) is dependent on both z and 
z•, the overall height of the boundary layer. 

It should be noted that the sharp minimum in (•) near z = 
0.7z• would undoubtedly be modified by a level 3 model 
calculation which includes diffusion of (0•). 

Readers might wish to compare the results of Figures 8, 9, 
and 10 with similar results obtained by Lewellen et al. [1976], 
Zeman and Lumley [1976], Sun and Ogura [1980], and Andre 
et al. [ 1976b]. The latter solved the aforementioned difficulty 
with the (u 2) problem by setting their length scale to a 
constant proportion to z• and by matching their lower 
boundary conditions to the data. 

It should be noted that Willis and Deardorff [1974] also 
obtained data for (wq2)/2. If (pw) were zero, one could 
compare those data with the diffusion represented by ql Sq 2 
(q2/2)/Oz in (24) (even though we formally neglected pressure 
diffusion, it must, as discussed in section 2, be considered a 
part of the diffusion term (24) ff observations indicate that pw 

9 0), in which case the model appears to underestimate the 
measured (wq2). 

The observational determination of net turbulent diffusion 
, 

importantly depends on the measured behavior of the dissi- 
pation. Since the buoyancy production must decrease linear- 
ly, or nearly so, with height, it may be inferred that net 
diffusion is small if dissipation behaves similarly. 

Lenschow [1970] and Kukharets and Tsvang [1977] ob- 
served dissipation rate profiles that were almost uniform 
with height in the middle regions of the convective mixed 
layer. Also, the explicit turbulent simulation model of Dear- 
dorff[1974] produced pressure diffusion that was small and 
velocity diffusion that was comparable to dissipation. On the 
other hand, nearly linear dissipation rate profiles were 
observed by Yokoyama et al. [ 1977] over land and by Pennel 
and LeMone [1974] over the tropical ocean. 

Also, Caughey and Wyngaard [1979] have, in an atmo- 
spheric convection layer, measured buoyancy production, 
dissipation, and turbulent velocity diffusion and by differ- 
ence determined that pressure diffusion is of opposite sign to 
velocity diffusion and, in fact, they tend to cancel. 

When the observational record is clarified, the model 
might be suitably modified. 

' . o - 0.8 ß ß 
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ø"t ø 
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Fig. 9. Horizontal and vertical turbulent energy components (solid symbols) by Willis and Deardorff [1974]. Open 
data symbols are aircraft measurements, solid lines are calculated, and w, --- (g13Hzi) m. 
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Fig. 10. Temperature variance (solid symbols) by Willis and 
Deardorff [1974]. Open data symbols are aircraft measurements, 
solid lines are calculated, and O, -- H/w,. 

It is reasonable to expect that Sq in (26) is Richardson 
number dependent as are, analogously, SM and SH. We 
have, in fact, computed the Willis and Deardorff [1974] 
experiment with Sq = const = 0.2 and with Sq oc SM (where 
the constant of proportionality is adjusted so that Se = 0.2 in 
the neutral flow limit). The difference in the calculated 
results were not large. 

Forced Convection 

The experiment whereby a shear stress was impulsively 
aP•Plied to the top surface of stable, salinity-stratified water, 
thereby mixing the top layer, has been performed by Kato 
and Phillips [1969]. Qualitatively, the mixing process is 
inhibited by the stratification such that an abrupt density 
change occurs across the interface separating strongly turbu- 
lent aiad quiescent fluid. Using the simpler, level 2 version of 
th• model (an algebraic length scale recipe and neglect of the 
turbulent kinetic energy tendency and diffusion terms), 
Melior and Durbin [1975] predicted these data quite well, 
and We expect that prediction will prevail when this latest 
version of the model is applied. Other examples of mixed 
layer dynamics are explored and a favorable comparison 
with ocean observations in the North Pacific is included in 

the paper by Melior and Durbin. The level 2« model has also 
been favorably compared to the two-level experiment of 
Kantha et al. [1977] by Melior and Strub [1980]. 

8. ATMOSPHERIC AND OCEANOGRAPHIC SIMULATIONS 

The Wangara Data Set 

The present model has been compared with atmospheric 
boundary layer data of Clarke et al. [1971], which are called 
the 'Wangara data.' The temperature variables in the previ- 
ous equations must now be interpreted as virtual potential 
temperature. 

Comparison of simulations and observations by Yamada 
and Melior [1975] are shown in Figures 11-13. The calcula- 

2.0 

1.5- 

-r- 1.0- 

0..5- 

COMPUTED / / • 

i i i i I I I 

12 18 0 6 12 18 0 6 

(hr) 

10 15 20 

1.5 17 

' 15 

0.5 0 
12 18 0 6 12 18 0 6 

(hr) 
t Day 33 ,1- Day 34 -• Day 354 

i i I 

5 10 15 2C 

(K) 
0900, day 33 to 0300, day 34 

/// \ 
........... / 1•2 ib 

..... 9 ..... ,3 
, ..... <...- 
5 10 15 20 

0900, day 34to 0300, day 35 

Fig. 11. Observed and calculated atmospheric boundary layer and vertical and temporal variations of mean virtual 
potential temperature -273øK. Units are degrees Kelvin. 



MELLOR AND YAMADA: TURBULENCE CLOSURE MODEL 865 

z 1.0- 

2.0 

1.5 

0 I -- 
12 1•8 1• 6 12 18 0 6 

(hr) 

-15 0 -115 

V \ 

;I j - 

, / 

,' !/ 

..... 
-lO -5 o 

(m-sec '•) 

2.0 

1,5-- 

1.0- 

0.5- 

,OBSERVED• L,.,h • • 

_ 

I I I I I I I 

12 18 0 6 12 18 0 6 

(hr) 
I Day 33-•'+- Day 34--'+'--Day 35• 

.......?., ß 
/• x/ ,,'1 I ,"' .":""" / 

i'-': "'>.¾ ( r 

(, ! ! )2 l I,,.• 2 / 
.......... I ........... t... \ I 
I 

-15 -10 -5 0 -15 -10 -5 0 

(m.se½ -1) {•.s• -•) 
12•, aav 33 to •, aay 34 1200, aay 34 to •00, aav 35 

Fig. 12. Observed and calculated atmospheric boundary layer and vertical and temporal variations of the eastward 
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tions shown in these figures used the algebraic length scale 
equation (50), end of section 6, but we expect the use of (48) 
would produce little change in the result. The calculations 
assume horizontal homogeneity so that altitude and time are 
the only independent variables. 

A feature of the velocity field prediction is the appearance 
of 'the nocturnal wind maximum' around midnight and near 
z = 200 m. The major effect of the diurnal surface heating 
cycle can best be seen in Figure 14, where we show contours 
of calculated turbulent kinetic energy. Further details are 
provided by Yamada and Melior [1975]. 

Pollutant Dispersion 

Model equations developed for temperature may also be 
applied to any scalar, such as a chemically inert pollutant. 

Using the horizontally homogeneous wind field generated 
for the Wangara simulation, Yamada [1977] has made a 
three-dimensional calculation of the dispersion of a pollutant 
point source located at various distances from the ground. 
Figure 15 illustrates the dispersion of a source located at z = 
40 m during the early morning and afternoon hours. The 
morning, low-level inversion confines pollutants to near- 
surface altitudes, whereas vertical mixing in the afternoon is 
vigorous, as would be deduced from Figure 14. Other 
calculations, which include an assessment of ground level 
concentration as influenced by source height, will be found 
in Yamada's paper. 

One finding of interest is that the effect of lateral diffusion 
terms in the mean concentration equation is negligible ex- 
cept very close to the source. Lateral dispersion is dominat- 
ed by vertical variability of mean wind speed and direction. 
Horizontal mean advective dispersion creates mean vertical 
concentration gradients which are subsequently mixed 
through vertical diffusion. 

Dobosy [1979] has also constructed a two-dimensional 
(vertical plane) model for pollutant transport based on the 
level 2« and 3 models. 
Two- and Three-Dimensional Flow With Orography 

As a first step toward realistic treatment of terrain effects, 
the airflow over single and double Gaussian mountains was 
investigated [Yamada, 1978b]. The governing equations are 
transformed into a terrain-following coordinate system in 
order to simplify the surface boundary conditions. Figure 
16a shows the horizontal wind vectors 1000 m above the 

surface of a Gaussian mountain 500 m high. Acceleration and 
deceleration of the horizontal wind speeds are seen on the 
lee and upwind sides, respectively. Additionally, the airflow 
diverges strongly as it approaches the mountain and con- 
verges in the lee of the mountain. The covergence and 
divergence in the horizontal wind fields result in vertical 
motions computed from the continuity equation. A maxi- 
mum downward motion of 2 m s-• is obtained approximately 
3.5 km above the downwind slope of the mountain; the 
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Fig. 13. Observed and calculated atmospheric boundary layer and vertical and temporal variations of the northward 
mean wind component. 

maximum upward motion is only 0.2 m s -1, as upward 
motion occurs over a greater volume. The potential tempera- 
ture in a vertical plane through the diagonal A-B in Figure 
16a is shown in Figure 16b. The potential temperature is 
increased by 8øC in the lee of the peak to subsidence 
occurring on the lee slope of the mountain. See Yarnada 
[1978b] for further discussion. Recently, more realistic to- 
pography is included in the two-dimensional [Yarnada, 
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Fig. 14. Time and space ,variation oœ computed q• (twice the 
turbulent kinetic energy); units are square meters per second. The 
stippled areas indicate regions where 10 -3 • q: < 10 -: m: s -•. 

1982b] and three-dimensional [Yamada, 1981] models, and 
the results are compared with observations. Tree canopies 
are parameterized in a relatively simple manner, but effects 
of both solar radiation and drag force are properly consid- 
ered [Yarnada, 1982a]. 

Effects of Water Vapor 

Exactly the same equations derived in the previous sec- 
tions are applicable for a moist atmosphere as long as phase 
changes do not occur and provided that virtual potential 
temperature 0• defined as 

0,) = (1 + 0.61 {•,))0 (56) 

is everywhere substituted for 0. In (56), •o is the mixing 
ratio of water vapor, and a tilde indicates an instantaneous 
value. In all previous equations the mean and the fluctuation 
of the virtual potential temperature, Oo and 0o, should 
replace the mean and fluctuation of potential temperature, O 
and 0. In addition, conservation equations of the mean and 
turbulence fluxes of water vapor can be derived assuming 
closure assumptions identical to those for the potential 
temperature are needed to obtain absolute temperature or 
potential temperature. The resulting equations for the water 
vapor are also identical in form to those for the potential 
temperature. Thus, for example, replacing O and 0 by Qo and 
qo, respectively, in (23), (28), (29), and (31) yields the 
required equations. 

Burk [1977] used the level 3 model to study temporal 
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Fig. 15. (a) Simulations of pollutant dispersion from a source at 
40 m above ground level. The mean wind, temperature, and turbu- 
lence field are the same as in Figures 11-14 at 1500 hours on day 33. 
The box represents a 40 km by 40 km by 1200 m domain. (b) Same as 
Figure 15a except the time is 0600 on day 34. 

variations in the moist atmospheric boundary layer and to 
investigate mechanisms to explain observations of layers 
which are well mixed thoroughly but far from well-mixed in 
terms of moisture. 

Condensation 

If phase changes occur, however, it becomes rather diffi- 
cult to solve the equations for the virtual potential tempera- 
ture and water vapor, since they are not conserved and 
suitable stipulations of source (sink) terms are not known. 
Therefore we have taken a different approach. One obvious- 
ly conserved quantity, even when phase changes occur, is 
the total water content Qw, defined as 

•w • •v q- •l (57a) 
where QI is the liquid water. Another conserved quantity 
used here is the liquid water potential temperature [Betts, 
1973] 0l, defined as 

0l-- 0 O Lv Ol (57b) 
rc• 

where Lo and Cp are the latent heat of evaporation and the 
specific heat of dry air at constant pressure, respectively. 
Therefore the conservation equations for the potential tem- 
perature as in (23) are replaced by identical equations for the 
liquid water potential temperature and for total water. 

In order to recover the water vapor and absolute tempera- 
ture fields, which are necessary for determining buoyancy 
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Fig. 16a. Horizontal wind vectors at 1•0 m above the surface 

of a mountain in Figure 25. Te•ain is contoured by dashed lines with 
an increment of 150 m. The lowest contour is z = 20 m. 

effects on the turbulence and for computing long-wave 
radiation cooling of the atmosphere, we follow Sommeria 
and Deardorff[1977] and Melior [1977] and assume a joint, 
Gaussian probability distribution for 01 and Qw. First, how- 
ever, we will derive equations for the various turbulence 
moments. The derivation of equations in detail has been 
already given by Yamada [1978a] or Yamada and Melior 
[1979]. Most of the equations for the turbulent moments are 
similar to those discussed in the previous sections. For 
example, (26) and (27) remain the same. Equation (28) is 
virtually the same except that 0 is replaced by 0 l SO that 

(UOl) = 312/q [-(uw) OOl/OZ -- {WOl) OS/Oz] 

{VOl} = 312/q [-{vw} OOl/OZ - {WOl} O V/Oz] (58) 

(WOl) = 312/q [-(w 2) OOl/OZ + •g (OoOl)] 
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Fig. 16b. Distribution of the potential temperature (kelvins) in a 
vertical plane through the diagonal A-B in Figure 16a. 
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and (29) becomes 

A2 OO! 
(0/2) = (wO!) • (59) 

q Oz 

In addition, equations for the fluxes and variance of the total 
water may be derived, resulting in 

(uq.,) = 312/q [-(uw) oQ.,/oz - (wq.,) o U/oz] 

(Vqw) = 312/q [-(vw) OQ.,/oz - (wq.,) o V/Oz] (60) 

(wqw) = 312/q [-(w 2) OQ•,/oz + 13g (O•q•,)] 
and 

(qw2) A2 (Wqw) OQw = - • (61) 
q Oz 

Finally, the equation for the cross correlation between O! and 
qw is 

OQw øO! - 2q (01qw) (62) 0 = --(WOl) -•Z - (Wqw) Oz A•-- 
By using (59), (61), and (62) we reduce to the level 2« 

model. However, the following condensation physics can be 
used in the level 4 or 3 models. In particular, Burk [1980, 
1982] has applied the level 3 model with condensation 
physics in a study of the turbulence structure parameters 
which provides useful information in interpreting acoustic 
optical or microwave propagation measurements. 

Unlike the previous cases where phase changes do not 
occur, the revised set of equations have more unknown 
terms than the number of equations, because of various 
correlations involving the fluctuation of virtual potential 
temperature. Therefore additional expressions to relate 
these terms (ujOo), (O vOl), and (0oqw) to known terms are 
needed. Readers are again referred to Yamada [1978a] or 
Yamada and Mellor [ 1979] for details of derivations. Only a 
brief discussion and the final results are given here. The 
virtual temperature relation which includes liquid water is, 
instead of (56), 0o = (1 + 0.61 Ow - 1.61 01)6. Together 
with (57b) we obtain 

0v = (1 + 0.61 0w - 1.61 0l) 61 + 01 (63) 

from which the mean is readily extracted to give 

Oo = (1 + 0.61 Qw - 1.61 QI) O! -b Q! (64) 

If from (63) and (64) we extract the fluctuating part and take 
moments, we obtain 

13(uiOo) = [3T(UjO!) + [3w(Ujqw) + •l(ttdql) 

13(O!0o) = 13T( O! 2) + 13w( Olqw) + [3l( O!ql) 

[3(qwOv) = •T(qwO!) + •w(qw 2) + •l(qwql) 

(65a) 

(65b) 

(65c) 

where higher-order moments are neglected and 

/3[(1 
/3r-- /3(1 + 0.61 Qw- 1.61 Q!) (66a) 

- 1.61 O! (66b) + 0.61 Qw 3.22 Q!) T C v 

/3w -- 0.61 13 O! + --Q! (66c) 
TG 

We are therefore required to determine (llj'ql), (O!ql) , and 
(qwql) to close the equation set. For the latter two quantities, 
as detailed by $ommeria and Deardorff [1977] and Mellor 
[1977], one way is to assume a binormal distribution for O! 
and qw, which we signify by G(O!, qw); we also assume 'fast' 
condensation physics according to O! = (Ow - Os)H(Ow - 
Qs), where H is the Heaviside operator and Qs is the 
saturation specific humidity value. 

Moments are then formed such that 

R = f_•• H(Ow - Os)G(Ol, qw) dOl dqw 
is the cloud fraction and 

Q! = f-•oo I-•oo (Ow -- Os)H(Ow - Os)G(O!, qw) dog dqw 
is the mean liquid water. For the turbulent moments, 

(qbq/) = f_•oo • •ll H(Ow - Os)G(Ol, qw) dO! dqw 
where qb = O! or qw. H is zero when Ow < Os and unity when 
Ow > Qs, in which case Qi = Qw - Os. In the latter case we 
expand Os in a Taylor series so that it is equated to 
saturation specific humidity at the mean liquid potential 
temperature Qsl, plus terms proportional to Ol and Qt. The 
result is that the integrals may be worked out and yield 

R-« l+erf •-'•,7• • 

Q! = aR(Qw- Qsl) + (27r)1/2 exp - 
a2(Qw -- Qsl) 2 

80-s 2 
((]}ql) Q! 1 

-R•_-R 
a( 4•qw) - b( 4•O!) 2tr• (2•r) •/2 

(67) 

(68) 

ß exp {- a2(Qw - Qsl)2 8rrs 2 } (69) 
where qb = O! or qw. The parameters a, b, and rrs are 

a --- 1 + Qsl, r (70a) 

b -= a(T/O)Qsl, r (70b) 

O's 2-- -• (a2(qw 2) -- 2ab(qwO!) + b2(012)) (70c) 

Qs!,T is obtained from the Clasius-Clapeyron equation and is 
the derivative of the saturation specific humidity with re- 
spect to temperature and evaluated at the mean liquid 
potential temperature. 

By assuming a trinormal probability distribution which 
includes as arguments u• as well as O! and q•, it may be 
shown that (69) is also valid where •b = u•. 

With the use of the flux equations and (59), (61), and (62), 
equation (70c) may be written in the following, computation- 
ally convenient form: 

A2 ( 001 OQw ) 2 O'$2 = 4-• K// b a (71) Oz Oz 
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Now successively inserting qb = u•, Ol, and qw into (69) 
provides necessary moments for insertion into (65a)-(65c). 
The results for (u•0o), (OlOo), and (qwOo) are then used in (58), 
(60), and (62). The expression for (wOo) for use in (25b) 
becomes 

[3(wOo) = ([3T- 131R'b)(wOl) + ([3w + [31R'a)(wq) (72) 

Finally, these results may be cast in the form of (30a), (30b), 
and (31) where, however, we write (OlW) and Ol in place of 
(0w) and O and add a flux equation for (qw), 

-(Wqw) = K• OQw/OZ (73) 

Equations (33a), (34), (35), and (36) remain unchanged 
except for the fact that Gn must be redefined so that 

Gn = -(12/q 2) 13g[ (74a) 

where • is defined by 

OOl OQw 

[ --(/3r- 131R'b)-•z + (13w + [3lR'a) (74b) 0z 

It is useful to note that as Ors --> 0, the above formulism 
reverts to a simple condensation model involving only mean 
quantities. Since it may be shown that a(Qw - Qsl) = Qw - 
Qs, we obtain R = H(Qw - Qs) and QI - (Qw - Qs)H(Qw - 
Qs) as as --> 0, where, once again, H is the Heaviside 
operator. 

Cloud Simulation 

The application of the cloud model is still very much in a 
research stage, and development is handicapped by lack of 
data. However, a one-dimensional version of the present set 
of equations including condensation processes was used to 
simulate the Barbados Oceanographic and Meteorological 
Experiment (BOMEX) data [Holland and Rasmusson, 
1973]. Model results and comparison with available data 

were discussed in detail by Yamada and Melior [1979]. The 
BOMEX was Conducted over and in the tropical ocean near 
the island of BarbadOs. The vertical profiles of computed 
and observed mean wind speeds, water vapor, and virtual 
temperature agreed reasonably well and are not shown. The 
results of the model-computed profiles of some turbulence 
variables, the mean and variance of liquid water, and cloud 
volume are shown in Figure 17. No data were available for 
quantitative comparison of these variables. Satellite photo- 
graphs, however, indicate that the computed cloud volumes 
were slightly overestimated. One interesting result is seen in 
the vertical profiles of the computed turbulence energy and 
eddy viscosity in Figure 17. These variables exhibit several 
maxima in the layers 1-3 km above the surface. Increases of 
the computed turbulence energy and eddy viscosity are 
closely related with the increases of the liquid water. The 
condensation process releases latent heat which produces 
locally unstable layers, resulting in larger turbulence. 

Cooling Pond Simulation 

A three-dimensional version of the model developed here 
has been used by Yamada [ 1978a, 1979] to evaluate quantita- 
tively the effects of a large cooling pond on the surrounding 
environment. The time dependent equations were integrated 
to obtain a nearly stationary state of the circulation over a 2 
km by 2 km square pond. Typical values observed for the 
wind speed, temperature, relative humidity in the surface 
layer, and water surface temperature were used to construct 
initial values and boundary conditions. The water and land 
temperatures were kept constant throughout the integration 
at 18øC and -10øC, respectively. Figure 18a shows the 
computed horizontal surface wind vectors at 0.2 m above the 
surface. Wind speeds increased from 1.4 m s -• at the inflow 
boundary to 3.8 m s -• over the cooling pond. This accelera- 
tion of wind speed is caused by the decrease of roughness 
length over land (3 x 10 -2 m is assumed) to that over water 
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! I 
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q2/2 (m 2 s-2) •q.o.I (g kg -1) 
Fig. 17. BOMEX cloud simulation. (a) Simulated turbulence energy, (b) viscosity coefficients, (c) mixing ratio of 

liquid water, (d) rms of the variance of liquid water, and (e) cloud fraction. Solid lines are for 0600 hours and dashed 
lines for 1500 hours on June 24. 
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Fig. 18a. Horizontal wind vectors at 0.2 m above the surface. The 
boundary of the cooling pond is indicated by dashed lines. 

(5 x 10 -5 m, a typical value computed from O.16u,2/g, where 
u, is a friction velocity) and by the air circulation induced by 
the temperature difference between the land and the pond. 
Convergence and divergence in the horizontal wind distribu- 
tions result in the vertical wind distribution (Figure 18b) in a 
vertical plane. A maximum upward motion of 3.5 cm s -• is 
computed over the downstream edge of the cooling pond. 

Global Atmospheric Simulations 

The level 2« model, with the algebraic length scale equation 
described previously, has now been incorporated into the 
general circulation models of the National Oceanographic 
and Atmospheric Administration's Geophysical Fluid 
Dynamics Laboratory. Currently, one such model repre- 
sents the global atmosphere with horizontal resolution of 
about 4 ø latitude and longitude and 18 vertical levels; the first 
five levels are assigned to the lower 2 km. 

These calculations produce an enormous amount of num- 
bers. Calculations extracted from a paper by Miyal½oda and 
Sirutis [1977] are shown in Figure 19. They are zonally 
averaged plots of temperature, zonal velocity, and K•t -= lq 

554 

365- 
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Fig. 18b. Distribution of W in a vertical plane through the 
diagonal A-B shown in Figure 18a. Units are centimeters per 
second. 

S•u. Synoptic detail is therefore averaged out of the plots. 
Nevertheless, one can identify the troposphere, tropopause, 
and stratosphere in Figure 19a; in Figure 19b the jet streams 
are evident. - 

Oceanographic Simulations 

The models we have described have been applied to 
oceanographic problems. The effect of salinity can be incor- 
porated in, say, the level 2« model by simply setting 
=/3o{wO) +/3s{WS), where {wO) is the potential temperature 
flux and {ws) is the salinity flux; /3o and rs are the corre- 
sponding coefficients of thermal expansion. It can be shown 
that Ku obtained in (32b) applies to both potential tempera- 
ture and salinity. Furthermore, (34) and (35) are unchanged 
so long as 13 OOo/Oz = i3o O0/Oz + 13s OS/Oz in (33b). 

The level 2 model was applied by Mellor and Durbin 
[1975] to ocean mixed layers and seemed to perform well 
with respect to laboratory simulations and also seemed to 
simulate data obtained at station PAPA in the North Pacific. 

It has been applied by Weatherly and Martin [1978] to the 
study of ocean bottom layers and by Adams and Weatherly 
[1981] to the study of bottom sediment transport. Simons 
[1980] has used the model to hindcast the seasonal variation 
of horizontally averaged temperature profiles in Lake Ontar- 
io using measured winds and storage-derived surface heat 
flux. The calculated temperature profiles were in close 
agreement with observation. A similar study was made by 
Klein [1980], and agreement was obtained with wind-driven 
mixed layer deepening data obtained in the Mediterranean. 
Klein [1980] also performed several useful sensitivity studies 
concerning the effect of wind-forcing frequencies. Mixed 
layers when forced with the resonant, inertial frequency will 
deepen much faster than when forced with higher or lower 
frequencies. 

A paper by Clancy and Martin [1981] presages the role of 
turbulent closure models in operationally forcasting the 
properties of ocean surface mixed layers. They also used the 
simplest level 2 model. One of their conclusions is that 
forecast errors are more associated with initialization fields 

(combining climatology and expendable bathythermograph 
drops where available) and surface boundary conditions 
(derived from the Navy's meteorological model) than with 
inadequacy of model physics. Further discussion of the 
needs and potential for operational ocean forecasting can be 
found in the work by Elsberry and Garwood [1980]. Gar- 
wood [1979] has also made available a general review of 
mixed layer dynamics and mixed layer models. 

More recently, the level 2« model has been applied to 
three-dimensional ocean simulation by Blumberg and Mellor 
[1980]. However, some two-dimensional (x, z)calculations 
were also included in their paper. Thus Figures 20 and 21 
illustrate the results of an impulsively imposed alongshore 
wind stress. Figure 20 is a homogeneous upwelling event, 
whereas Figure 21 is a density-stratified upwelling event. 
The role of stratification in confining mixing to surface and 
bottom layers is readily apparent. Also, in Figure 21, one 
will observe the formation of a nearshore (x = 2 km) front 
and baroclinic jet. Foo[ 1981] has presented a more compre- 
hensive study of nearshore upwelling and frontogenesis 
using a level 2« model. 

It should be noted that in this application the master length 
scale equation (48) works quite well. It is integrated through- 
out the entire computational domain and yields both surface 
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Fig. 19. Zonally averaged variable contours from the global atmospheric simulation by Miyakoda and Sirutis [ 1977] 
in March. (a) Virtual potential temperature. Units are degrees Kelvin. (b) Eastward velocity contours. Units are meters 
per second. (c) Log]o of K•4/(cm 2 s-I). 

layer and bottom layer master lengths appropriate to each 
layer. 

Figure 22 shows comparison between observed tempera- 
ture data and calculation for the annual cycle in upper layers. 
The observed data are the climatological temperature pro- 
files in the Gulf of Mexico. Data from hydrographic surveys 
are averaged by month. The data are then area-averaged 
throughout the basin. Salinity profiles are also obtained but 
play a minor dynamical role in the Gulf. The model is driven 
by winds obtained from ship reports and averaged in a 
similar fashion. Drag coefficients very close to those recom- 
mended by Bunker [1976] were used to obtain surface stress 
statistics ex, ey, and ]•'[, where the overbar here represents 

the average of all data in a given month and on an average. 
The actual imposed wind stress oscillates (with a 4-day 
period) in magnitude and direction so that the resulting fx, fy, 
and ]•] match the data. The imposed surface heat flux was 
simply extracted from the data so that the heat storage 
(vertical integral of temperature) of the calculation and data 
agree. (Note that for the same heat storage many profiles are 
possible including, at one extreme, very large summertime 
temperature confined to a very thin surface layer.) The final 
result is that observationally predicted temperature profiles 
compare quite well. Further details and an account of a fully 
three-dimensional model as applied to the Gulf of Mexico are 
found in a report by Blumberg and Melior [1981]. 
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Fig. 20. A homogeneous upwelling event induced by an along- 
shore wind stress of 2.0 dyn/cm 2 directed into the plane of the paper. 
The wind stress has been imposed for 6 hours. The onshore (U 
negative) and offshore (U positive) isotachs are depicted in the 
upper portion of the figure, while the alongshore (V positive into the 
plane of the paper, V negative out of the plane of the paper) isotachs 
are depicted in the lower portion. 

9. DISCUSSION 

A turbulence model has been developed which is relative- 
ly simple and which can be applied to a wide variety of 
engineering and geophysical flows. 

We separate the study of the model into (1) the group of 
closure assumptions proposed by Rotta, extended to include 
temperature (or any other scalar) and density stratification, 
and (2) the master length scale. 

The rules of the game we are playing, at least until the 
present, are to obtain all empirical constants from neutral 
data and then see if the model can predict stabilization or 
destabilization of turbulent fields due t O density stratification 
in a g•avity field and, in separate 'studies, due to flow 
curvature and other body force-like effects. The constants in 
(12), one of which is not independent, are unambiguously 
related to simple neutral flow data, and computer solutions 
are not required to identify these constants. The remaining 
constants are von Karman's constant K and the three con- 

stants in (48), one of which is not independent. Trial and 
error computer solutions have determined these last two 
independent constants. 

The model and the fixed set of constants seem to perform 
well in predicting diverse neutral flows. The same model, 
with no alteration, appears to predict density-stratified flows 
in a manner which far exceeds expectation prior to 1973. 

The various models, levels 4, 3, 2«, and 2, represent 
decreasing complexity and decreasing requirements for com- 
puter time and storage. For one- (vertical) and perhaps two- 
dimensional model simulations, any version is affordable. 
However, for large, three-dimensional, atmospheric or 
oceanographic numerical models the level 4, certainly, and 
the level 3, probably, must yield to either the level 2« or the 
level 2 closure model on the basis of computational econom- 
ics. 

The level 2 model has received the greatest exposure in 
the literature, partly because of computer economy and 
partly because it is relatively easy to program. For most of 
our own work we use the level 2« model. This requires the 
solution of equations for q2 and q21, over and above the usual 
prognostic equations for mean velocity, temperature, and 
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Fig. 21. A stratified upwelling event induced by an alongshore wind stress of 1.0 dyn/cm directed into the plane of 
the paper. This wind stress has been imposed for 12 hours. The direction of the isotachs is the same as in Figure 20. The 
initial temperature distribution is denoted as To. 
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Fig. 22a. The climatologic•, area-averaged time-depth vacation 
of temperature in the Gulf of Mexico. 

humidity for the atmosphere or salinity for the ocean. It has 
a greater predictive range than the level 2 model, and the 
length scale equation, although the most empirical element 
of the complete model, does seem to perform in a more 
satisfactory manner than the simple algebraic equation asso- 
ciated with the level 2 model. For example, in ocean 
simulations, all equations may be integrated top to bottom 
and generally include separate, surface and bottom mixed 
layers bounding nonturbulent flow. The prototype example 
of a single boundary layer bounded by nonturbulent flow is 
the laboratory flow in Figure 7. On the other hand, in 
shallow water, where surface and bottom layers merge, the 
length scale equation performs well, as was seen in the 
prototypical merged layer case of channel flow in Figure 6. 

It is important to realize that the simpler models cannot, in 
principle, account for some flow behavior. For example, 
Uberoi's experiment requires the full level 4 model to 
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Fig. 22b. Model simulation of the time-depth variation of tempera- 
ture in the Gulf of Mexico. 

account for the return to isotropy for a homogeneous, 
initially anisotropic flow field where shear and buoyancy 
production are nil. The levels 3 and 2« models will correctly 
account for the decay of turbulent kinetic energy, but all 
energy components will be declared equal. Finally, the level 
2 model, for the same flow, will yield zero turbulent kinetic 
energy. Since spatial diffusion of energy is lacking, it will 
also yield zero turbulent kinetic energy at the center line of 
channel flow, contrary to observation. Nevertheless, in 
many geophysical applications the level 2 model works quite 
well, since mixing events are generally dominated by the 
shear or buoyancy production terms in the turbulent kinetic 
energy equation. 
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