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[1] A new convective parameterization is introduced that
can make use of a large variety of assumptions previously
introduced in earlier formulations. The assumptions are
chosen so that they will generate a large spread in the
solution. We then show two methods in which ensemble
and data assimilation techniques may be used to find the
best value to feed back to the larger scale model. First, we
can use simple statistical methods to find the most probable
solution. Second, the ensemble probability density function
can be considered as an appropriate ‘‘prior’’ (a’priori
density) for Bayesian data assimilation. Using this ‘‘prior’’,
and information about observation likelihood, measured
meteorological or climatological data can be directly
assimilated into model fields. Given proper observations,
the application of this technique is not restricted to
convective parameterizations, but may be applied to other
parameterizations as well. INDEX TERMS: 3337

Meteorology and Atmospheric Dynamics: Numerical modeling

and data assimilation; 3314 Meteorology and Atmospheric

Dynamics: Convective processes; 3329 Meteorology and

Atmospheric Dynamics: Mesoscale meteo-rology; 3309

Meteorology and Atmospheric Dynamics: Climatology (1620)

1. Introduction

[2] Properly parameterizing the effects of convection is
still a challenging problem for numerical weather predic-
tion (NWP). There are many different parameterizations
for deep and shallow convection that exploit the current
understanding of the complicated physics and dynamics of
convective clouds to express the interaction between the
larger scale flow and the convective clouds in simple
‘‘parameterized’’ terms. These parameterizations often dif-
fer fundamentally in closure assumptions and parameters
used to solve the interaction problem, leading to a large
spread and uncertainty in possible solutions. In past
studies, these uncertainties have led to many discussions
regarding which assumptions are the proper ones to use
under what conditions.
[3] In this paper we offer a generalized approach to make

use of these uncertainties by combining ensemble and data
assimilation techniques. First a parameterization is devel-
oped that can employ a large ensemble of closure assump-
tions and parameters. These closures and parameters are
taken from cumulus parameterizations which are currently
used in various three-dimensional models. This is described

in section 2. Statistical techniques may then be applied to
find the proper feedback to the three-dimensional model.
Such techniques have already been successfully applied and
verified in several operational centers. We discuss the
statistical methods that we use for our application in
section 3. We offer an additional solution by combining
data assimilation with an ensemble-type parameterization.
This is discussed in section 4. Finally, conclusions are
provided in section 5.

2. The Parameterization Framework

[4] The parameterization framework is a simple scheme
that is based on a convective parameterization developed by
Grell [1993, G1] and discussed in more detail by Grell et al.
[1994, G2]. For our application, the simple scheme was
expanded to allow for a series of different assumptions that
are commonly used in convective parameterizations and
that have proven to lead to large sensitivity in model
simulations. In addition, values for the assumed parameters
are perturbed (see section 3). Because of the limited scope
of this paper, we refer the reader to G1 and G2 for details,
and this paper only discusses the most important aspects
that we use in our new ensemble approach. Following G1,
we will use the same terminology of dynamic control (the
modulation of the convection by the environment), feed-
back (modulation of the environment by the convection),
and static control (the cloud model that is used to determine
cloud properties).

2.1. Static Control and Feedback

[5] Many cumulus parameterizations use some type of
simplified cloud model to calculate cloud properties.
Despite the simplicity of these cloud models, assumptions
and parameters chosen by these 1-d cloud models can lead
to large sensitivities within the framework of a cumulus
parameterization. Here we choose to implement and test
assumptions that directly influence the vertical redistribu-
tion of heat and moisture or the rainfall rate. Following G1,
we introduce the symbol l to denote an ensemble type, and
rewrite the entrainment hypothesis as

mue z; lð Þ � mud z; lð Þ ¼ 1

mu z;lð Þ
@mu z;lð Þ

@z
; ð1Þ

where mue is the gross fractional entrainment rate, mud is the
gross fractional detrainment rate (subscript u designates an
updraft property), and m is the mass flux. Following G1,
each subensemble is normalized by the mass flux at cloud
base (mb) to give

mu z;lð Þ ¼ mb lð Þhu z; lð Þ: ð2Þ
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where hu is the normalized mass flux. Given initial
conditions and closures for entrainment, as well as
detrainment rates, Equations (1) and (2) can be used together
with the steady state plume equation (see G1) to estimate
model-cloud properties such as normalized mass flux,
normalized condensation and evaporation profiles, moist
static energy, and liquid water content for each ensemble
member. Following G1, the equations for the downdraft
mass budget would be analogous to (1) and (2). The choice
of entrainment and detrainment rates characterizes sub-
ensembles Ef 2, Ef 3, and Ef4 (see Table 1) in this study.
[6] Results have also proven very sensitive to the depend-

ency of the downdraft mass flux on the updraft mass flux.
Following G1, by assuming that part of the total condensate
is evaporated in the downdraft, this dependency may be
expressed as

m0 lð Þ ¼ b lð Þ I1 lð Þ
I2 lð Þmb lð Þ: ð3Þ

Here (1 � b(l)) would be the precipitation efficiency
(usually a function of wind shear and subcloud humidity),
m0 the downdraft originating mass flux, and I1(l) and I2(l)
are the normalized condensate and evaporate of the updraft
and downdraft of ensemble l. This closure is usually very
sensitive to the parameterization of the precipitation
efficiency, and has been chosen for subensemble Ef 1
(Table 1).

2.2. Dynamic Control

[7] A multitude of different closures exist in the literature
to determine the amount and location of convection. Many
of these closures may be used in this scheme to determine
mb, the cloud base mass flux.
[8] The first type of closure is based on some type of

stability equilibrium. We chose to use the definition of the
cloud work function A, an integral measure of the buoyancy
force associated with a cloud of subensemble l, which was
first given by Arakawa and Schubert [1974, AS]. In the
original implementation of the Grell scheme (G1), an equi-
librium between the larger scale forcing and the cloud
response was assumed

�A0 lð Þ � A lð Þ
dt

¼ A00 lð Þ � A lð Þ
m0

b lð Þdt mb lð Þ; ð4Þ

where A0(l) is the cloud work function that was calculated
using thermodynamic fields that were modified by forcing
terms, and A00 is the cloud work function that was calculated
using thermodynamic fields that were modified by a cloud
with arbitrary unit mass mb

0(l)dt. Equation (4) can be easily
solved for mb. In G1, A is calculated locally (subensemble
Edyn1). To more closely follow AS, a climatological value
for A can be used (subensemble Edyn2).
[9] In a third implementation (subensemble Edyn3), to

simulate a closure in which the stability is simply removed
by the convection (as assumed in similar form by Kain and
Fritsch [1992]), we simply assume

�A lð Þ
dtð Þc

¼ A00 lð Þ � A lð Þ
m0

b lð Þdt mb lð Þ; ð5Þ

which has the effect of making mb(l) strong enough to
remove the available instability within the specified time
period (dt)c. Naturally (5) is sensitive to the choice of the
parameter dtc.
[10] Another group of widely used closure assumptions is

based on moisture convergence (Kuo [1974], Molinari
[1982], Krishnamurti et al. [1983], to name a few). While
there are many different choices, here we chose an assump-
tion first introduced by Krishnamurti et al. [1983], where
the total rainfall R is assumed to be proportional to the
integrated vertical advection of moisture Mtv using

R ¼ Mtv 1þ femp
� �

1� bð Þ: ð6Þ

Here b is the Kuo moistening parameter, and femp is an
empirical constant. In addition, it can be shown (see G1)
that the subensemble rainfall is defined as

R lð Þ � I1 lð Þ 1� bð Þmb lð Þ: ð7Þ

Equations (6) and (7) can be used to calculate mb in terms of
Mtv. This closure is used for subensemble Edyn4. Any other
moisture convergence closure may be employed by
redefining Mtv.
[11] A further dynamic closure that is easily imple-

mented was first introduced by Brown [1979], who assumes
that the cloud mass flux at the cloud base is proportional to
the environmental mass flux ~M at some lower tropopheric
level lt. This level may be taken as the top of the PBL
height, or the level of the updraft originating air. Brown’s
closure was modified by Frank and Cohen [1987], by
assuming

mb lð Þ ¼ mu lt; lð Þ ¼ ~M ltð Þ � md lt; t ��tð Þ: ð8Þ

Here md(lt, t–�t) is the downdraft mass flux at the previous
time step. This closure simulates a time lag between updraft
and downdraft, envisioning the downdraft of a thunder-
storm forcing another updraft at a later time. This closure
builds the foundation for subensemble Edyn5.

3. Ensemble Statistics

[12] Table 1 summarizes the set of ensembles used in this
study. For subensembles Edyn1, Edyn3, Edyn4, Ef 1, Ef 2,

Table 1. Overview of Ensembles Used in this Study

Name Part of
Parameterization

Varied
Parameter

Number of
Variations

Edyn1 dynamic control larger-scale forcing
tendencies

3

Edyn2 dynamic control A 4
Edyn3 dynamic control dtc 3
Edyn4 dynamic control b 3
Edyn5 dynamic control lt 3
Ef1 static control/feedback b 6
Ef2 static control/feedback mud(z, l) 4
Ef3 static control/feedback mue(z, l) 6
Ef4 static control/feedback mdd(z, l) 6

The 16 Edyn closures are allowed to interact with any of the other
closures, giving a total of 13824 ensemble members (16 � 6 � 4 � 6 � 6).
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Ef 3, and Ef4 parameters are perturbed within a range
(uniform distribution) bounded by different values. For
Edyn2 the spread of climatological values of A has been
chosen based on work from Lord and Arakawa [1980]. For
Edyn5, lt was taken as either the level of free convection, the
level of updraft originating air, or the level with the
maximum upward vertical velocity below the level of free
convection. In current implementations of versions of this
scheme [Grell and Dévényi, 2001], we use the ensemble
mean of mb at each time step and grid point to determine the
feedback to the 3-d model. However, here our goal is to find
a method to feed back the ‘‘best’’ values, where ‘‘best’’ is
defined in the context below. The ‘‘best’’ values do not
necessarily bear any relationship to this mean.

3.1. Basic Statistics

[13] As a first step, each ensemble and subensemble was
submitted to detailed statistical analysis following a strategy
close to one given in Stephenson and Doblas-Reyes [2000].
This approach is somewhat similar to ones applied in large
scale weather forecasting, unifying forecasts from different
ensembles, different forecast models, and even from differ-
ent weather forecasting centers (see Ebert, [2001] and
references therein).
[14] The most basic statistics we compute are mean

(average), standard deviation, skewness, and flatness (kur-
tosis). These estimations were performed at each time step
and at each gridpoint individually for individual subensem-
bles and also for unified ensembles.
[15] In order to illustrate the simplest application of this

scheme, we collected statistics from two real time MM5
experiments over a one month period. The model was run
for a forecast length of 12 hour, twice a day, during August
of 2001, using a horizontal resolution of 27 km (60 runs
each). The domain with size of about 3000 km � 3600 km
was centered over the central/eastern USA. For the first
experiment (R1) to preserve the full spread with respect to
the rainfall rates but reduce the computational costs, we
limited the feedback ensemble size (using only 3 variations
of Ef 1 and 3 variations of Ef 2), but left the dynamic
closure size unchanged. For the second experiment (R2),
the number of ensembles was further reduced by keeping
only Edyn1 (as used in G2). Results are displayed in Figure
1. It can be seen that the use of ensembles improves the

domain averaged precipitation comparison, even in this
simple application. Figure 1 also shows the bracketing
maximum and minimum values of the precipitation rates,
indicating that more improvement may be possible with an
appropriately trained scheme. This will be discussed in the
following sections.

3.2. Correlation Between Subensembles

[16] An important issue regards how much information is
contributed from different subensembles to the unified
ensemble. In an ideal case all subensembles are statistically
independent, which maximizes the contribution to a unified
ensemble. Because subensembles are constructed under sim-
ilar but not identical physical hypotheses, complete inde-
pendence cannot be expected. As an illustration of a method
that tests the degree of inter-dependence of the subensembles,
we generated correlations among the four main groups of
closures for one arbitrarily selected convectively active grid
point. As expected, Table 2 indicates various degrees of
independence among the subensembles. These correlations
are driven by the character of the convection and are therefore
a function of gridpoint and time. On average we expect to
maintain an appropriate estimation of spread.
[17] Using inter-subensemble correlations, a statistically

optimal mixture of subensembles may be derived, trained on
observational data. One simple and efficient way to do this
may be the application of linear regression techniques as was
done by Krishnamurti et al. [1999]. This is also an option in
our scheme and will be explored for global and regional
climate modeling applications as well as for weather forecast-
ing. However, a regression trained on a climatological data set
may be less effective compared to some local methods.

3.3. Probability Density Estimation

[18] In order to visualize ensemble probability distribu-
tion functions (PDFs) for operational weather forecasters or
data assimilation studies, appropriate probability density
estimation methods should be employed. For our purposes
we found the Epanechnikov kernel method from Härdle
[1990] satisfactory. The PDFs estimated with this approach
may then be used in the data assimilation technique
described in the next section.

4. Data Assimilation

[19] The large size of the cumulus ensembles (see Table 1)
and the application of different controls and closures pro-
vide a unique opportunity for assimilating data into model
fields where and when corresponding measurement data are
available. To realize this opportunity we should go beyond
the standard methods of data assimilation. In our case of
highly nonlinear systems of convection a full description of
PDFs is required and a general Bayesian framework should
be employed. We formulate our data assimilation method in
the Bayesian framework of conditional probability distribu-

Figure 1. Domain averaged precipitation rates from MM5
real time runs. The model was run twice daily for 12-hour
forecasts during August of 2001. Displayed are results from
experiments R1 (dotted) and R2 (dashed), as well as
observed precipitation rates (solid). Bracketing maximum
and minimum precipitation rates from R1 are represented by
the filled circles.

Table 2. Correlations Between Main Groups of Closures

Closure Group Edyn1 Edyn3 Edyn4 Edyn5

Edyn1 1.00 0.85 0.88 0.19
Edyn3 0.85 1.00 0.72 0.26
Edyn4 0.88 0.72 1.00 0.25
Edyn5 0.19 0.26 0.25 1.00
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tions (Miller et al. [1999]). According to the Bayes theorem
we can write the posterior density f(x|y) as

f x yjð Þ ¼ f y xjð Þf xð ÞR
f y xjð Þf xð Þdx ; ð9Þ

where f(x) is the prior density (PDFs described in the
previous section) deduced from the actual ensemble, y is an
observation, and f (y|x) is the likelihood. We suppose the
observation process results at a given time and location in a
value yk = h(x) + se, where h is the observation operator
(could contain interpolation and physical processes) and e is
Gaussian white noise with s standard deviation. If we
accept that the observation noise is Gaussian, we can
compute the likelihood as

f yjxð Þ ¼ 1ffiffiffiffiffiffi
2p

p
s
exp � y� h xð Þð Þ2

2s2

 !
: ð10Þ

This way we have all the ingredients (prior from the
ensembles, likelihood by Equation (10)) to apply Bayes
Theorem, and can compute the posterior density using
Equation (9). Mean or median of posterior distribution
could be applied as feedback to model fields.
[20] Figure 2 presents an example of how much improve-

ment may be possible when using this method. Shown is the
domain averaged bias for experiment R1, averaged over all
60 runs whereever observed and forecasted precipitation was
non zero (dashed line). Shown is also the bias (solid line) from
the same experiment after diagnostically applying the data
assimilation method. The bias is generally reduced substan-
tially, except during the first two hours of the simulation.

5. Conclusions

[21] We have developed a new convective parameter-
ization framework that is able to use a large ensemble of
assumptions and can make use of ensemble as well as data
assimilation techniques to determine the optimal value for
feedback to three-dimensional models. The model output
fields that were generated by the described statistical
methods may also aid forecasters or scientists in diagnosing
model predictions or simulations.

[22] While in this paper we only show how the param-
eterization may be trained with precipitation data, a similar
procedure may be applied to train the vertical redistribution
of heat and moisture, or the detrainment of hydrometeors
and their interaction with radiation, if observations become
available. Results from process resolving simulations may
of course also serve as observations. In addition, we want to
emphasize that our approach using ensembles of (or within)
parameterizations in combination with data assimilation
techniques may also be used for other physical parameter-
ization schemes. Any available observed data, not handled
in traditional data assimilation schemes but related to the
physics, could be assimilated directly into the model fields.
[23] This parameterization is currently being used in the

operational 20-km RUC model [Grell and Dévényi, 2001]
used at the National Centers for Environmental Predictions
(NCEP), in a version with 144 ensembles. Work is in
progress to fully use its capabilities (data assimilation
techniques) within several NWP models.
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Härdle, W., Applied nonparametric regression, Cambridge University
Press, Cambridge, 333 pp., 1990.

Kain, J. S., and J. M. Fritsch, The role of the convective ‘‘trigger function’’
in numerical forecasts of mesoscale convective systems, Meteorol.
Atmos. Phys., 49, 93–106, 1992.

Krishnamurti, T. N., S. Low-Nam, and R. Pasch, Cumulus parameteriza-
tions and rainfall rates II, Mon. Wea. Rev., 111, 815–828, 1983.

Krishnamurti, T. N., C. M. Kishtawal, T. E. LaRow, D. R. Bachiochi,
Z. Zhang, C. E. Williford, S. Gadgil, and S. Surendran, Improved weather
and seasonal climate forecasts from multimodel superensemble, Science,
285, 1548–1850, 1999.

Kuo, H. L., Further studies of the parameterization of the effect of cumulus
convection on large scale flow, J. Atmos. Sci., 31, 1232–1240, 1974.

Lord, S. J., and A. Arakawa, Interaction of a cumulus cloud ensemble with
the large-scale environment, Part II, J. Atmos. Sci., 37, 2677–2692, 1980.

Miller, R. N., E. F. Carter Jr., and S. T. Blue, Data assimilation into non-
linear stochastic models, Tellus, 51A, 167–194, 1999.

Molinari, J., A method for calculating the effects of deep cumulus convec-
tion in numerical models, Mon. Wea. Rev., 110, 1527–1534, 1982.

Stephenson, D. B., and F. J. Doblas-Reyes, Statistical methods for inter-
preting Monte Carlo ensemble forecasts, Tellus, 52A, 300–322, 2000.

�����������
G. A. Grell, NOAA/OAR/FSL, Skaggs Research Center, 325 Broadway,

Boulder, CO 80305, USA. (georg.a.grell@noaa.gov)
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Figure 2. Domain averaged bias from experiment R1,
averaged over all 60 runs whereever observed and
forecasted precipitation was non zero (dashed line). Shown
is also the bias (solid line) from the same experiment after
diagnostically applying the data assimilation method.
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