Física Experimental IV

Prof. Antonio Domingues dos Santos adsantos@if.usp.br

Ramal: 6886

Mário Schemberg, sala 205

Prof. Leandro Barbosa

lbarbosa@if.usp.br

Ramal: 7157

Ala I, sala 225

Aula 4 - Experiência 1
Circuitos CA e Caos
2013

http://lababerto.if.usp.br/

Prof. Henrique Barbosa (coordenador)

hbarbosa@if.usp.br

Ramal: 6647

Basílio, sala 100

Prof. Nelson Carlin carlin@dfn.if.usp.br

Ramal: 6820

Pelletron

Prof. Paulo Artaxo artaxo@if.usp.br

Ramal: 7016

Basilio, sala 101

Objetivos

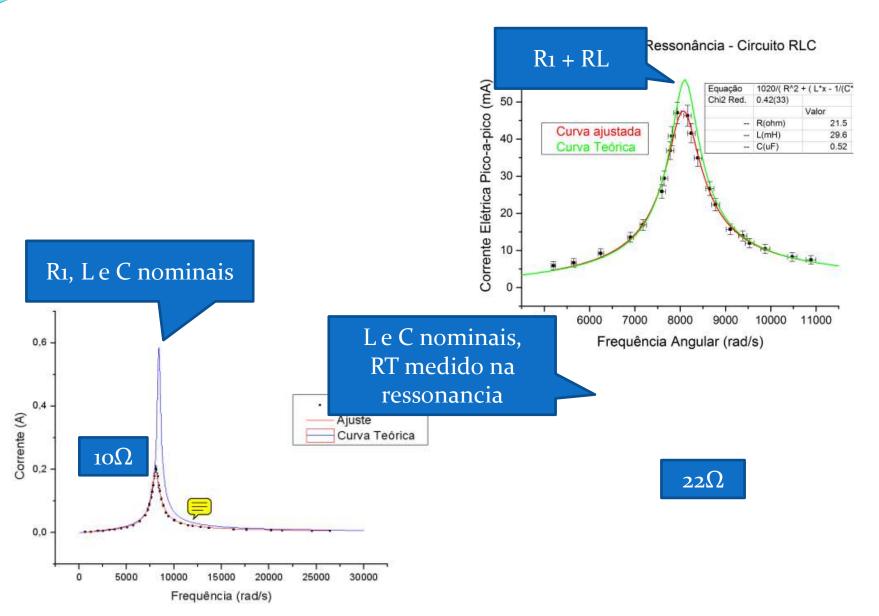
- Estudar circuitos elétricos em corrente alternada com a finalidade de explorar fenômenos caóticos
- Aprender algumas técnicas avançadas de processamento de sinais e análise de dados
- 5 aulas
 - Noções de CA, filtro RC
 - Circuito integrador e análise de Fourier
 - Ressonância de um circuito RLC simples
 - Funções caóticas: mapa logístico
 - Caos em circuito RLD

TAREFAS SEMANA PASSADA

Tarefas 1 – para Síntese

- Medir a curva de ressonância (i x ω) com R=10 Ω , C=0.47 μ F, L= bobina de 1000 espiras
 - Não altere a força eletromotriz do gerador durante as medidas (e verifique que ela se mantém constante!).
- Faça o gráfico para a curva de corrente (i x ω)
 - Colocar também curvas teórica e ajustada
- A partir do ajuste, determine o valor experimental da freqüência de ressonância e compare com o valor previsto
- A partir do ajuste, determine R, L e C e compare com os valores nominais.
 - Há discrepâncias? Explique porque.

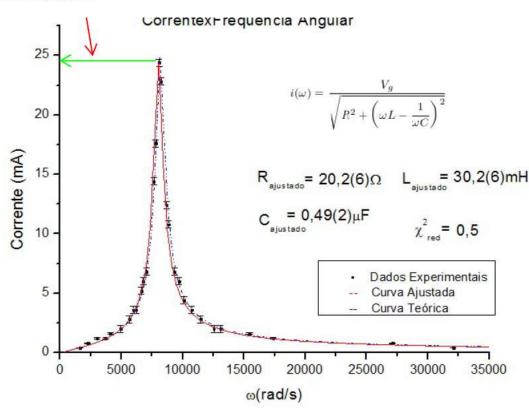
Parâmetros do Circuito


	R1 (Ω) Nom	R1 (Ω) Multi
H1	10.0 (5)	?
H2	10.0 (5)	10.2 (6)
Н3	10.0 (5)	10.0 (3)
H4	10.0 (5)	11.1 (2)
H5	10.0 (5)	?
Н6	10.0 (5)	10.0 (6)
H7	10.0 (5)	10.4 (5832)
Н8	10.0 (5)	10.0 (6)
H9	10.0 (5)	10.0 (1)
H10	10.0 (5)	11 (1)

Era preciso **uma boa medida** da resistência **R1** pois desta é que se vai tirar a **corrente** no circuito!

Apesar da média da turma ser compatível com o valor nominal, cada resistor em si pode ser bem diferente!

Multi= 10.24 (41) z=0.37

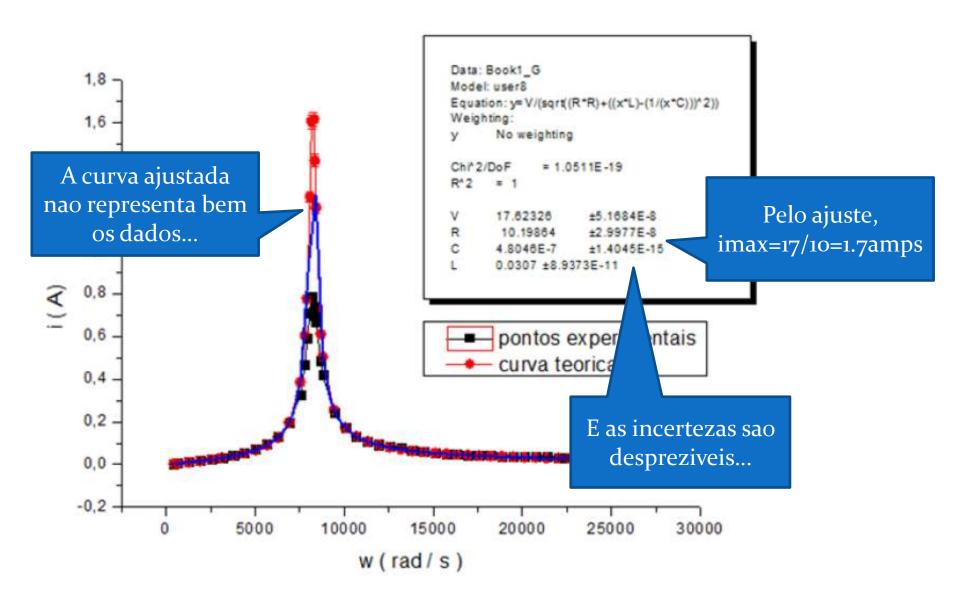

Ressonancia em Corrente

Problemas - 1

Utilizou-se uma resistência de $10,0(3)\Omega$, um capacitor de 0,50(3) μF e um indutor de 29(1)mH de resistência interna de $7,9(2)\Omega$ (todos medidos com o multímetro com suas devidas incertezas).

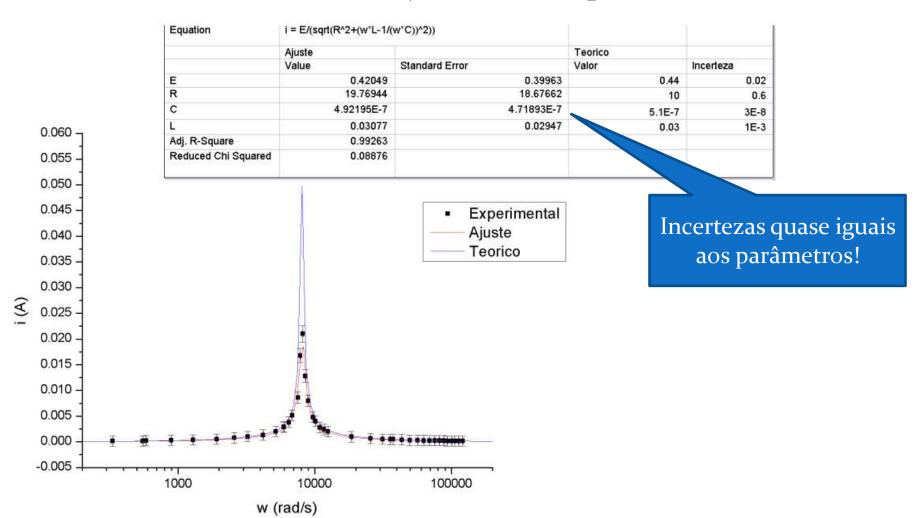
Como o gerador de áudio utilizado não era ideal, sua tensão é dada por $V_g = \epsilon_0 - Ri$, obteve-se o ϵ utilizando um circuito de uma resistência e o osciloscópio, dando um valor de aproximadamente 0.51(5)V.

Imax = Vg / Rtotal


Para o teorico:

0.51 / (10.0 + 7.9) = 28 mA

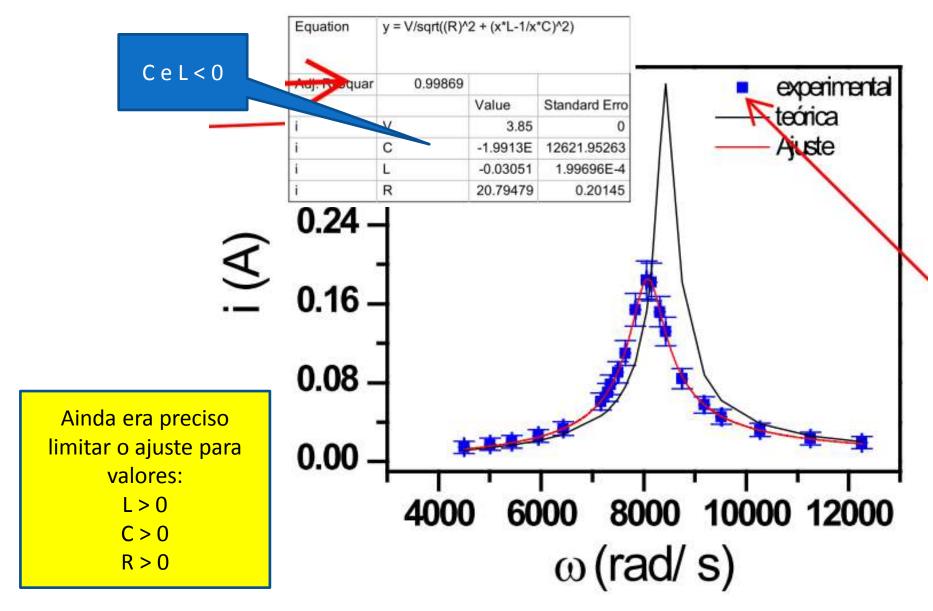
Para o ajuste:


0.51 / 20.2 = 25 mA

Problemas - 2

Problemas - 3

Também tentaram um ajuste com 4 parâmetros...



Um dos grupos percebeu

Foram tomados dados de V_R e ω , e, com eles, construído um gráfico de I versus ω , figura 1. Na equação anterior, note que, se a é uma constante qualquer, $I_0 = \frac{aV_0}{\sqrt{(aR')^2 + \left(\omega(aL) - \frac{1}{\omega(aC)}\right)^2}}$, de modo que, ao ajustar uma curva I versus ω para todos os parâmetros V_0 , R', L, C, existam infinitos parâmetros possíveis que satisfaçam o problema. Com efeito, com parâmetros iniciais $V_0 = 8,72$ V, R' = 10,0 Ω , L = 30,4 mH e C = 0,501(33) μ F, obteve-se os parâmetros ajustados $V_0 = 8,3(44)$ V, R' = 19(10) Ω , L = 29(15) mH e C = 0,52(28) μ F, cujas altas incertezas demonstram o fato de que há inúmeros parâmetros que satisfaçam os dados (considerando todos os parâmetros como ajustáveis).

Para resolver esse problema, foi fixado o parâmetro $V_0 = 8,72(9)$ V, a força eletromotriz do gerador, o qual foi medido ao longo de todo o experimento (para garantir que V_0 era a força eletromotriz, suas medidas foram feitas com o circuito aberto). Nesse caso, a função ajustada está apresentada na figura 1, junto a curva teórica (ou seja, obtida com os parâmetros teóricos, calculados acima). Os valores obtidos para os parâmetros foram $R' = 20,3(4)~\Omega,~L = 30,6(2)~\text{mH},~C = 0,496(4)~\mu\text{F}.$ A frequência de ressonância é, então, $\omega_{0,exp} = 8,09(8) \times 10^3~\text{rad/s}$ (ou $1,29(1) \times 10^3~\text{Hz}$).

Tutorial no site: usem!!!

Parâmetros do Circuito

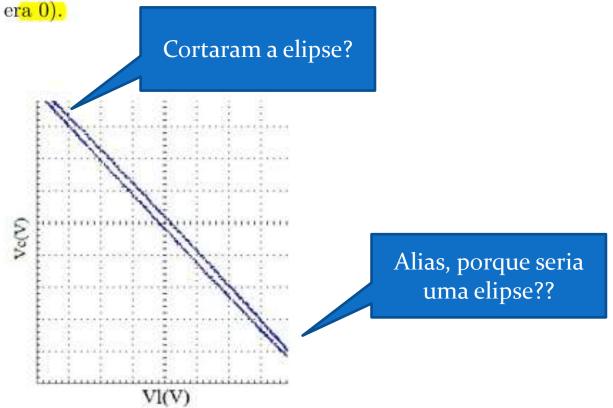
	C (μF) Nom	C (μF) Multi	C (μF) Ajuste
H1	0.47 (5)	?	0.49 (7)
H2	0.47 (5)	0.51 (2)	0.52 (1)
Н3	0.47 (5)	0.50 (5)	0.49 (2)
H4	0.47 (5)	0.49 (3)	0.48 (zero)*
H5	0.47 (5)	0.53 (3)	0.802 (8)
Н6	0.47 (5)	0.51 (3)	0.5 (5)*
H7	0.47 (5)	0.504000 (9032)	0.49 (1)
Н8	0.47 (5)	0.501 (33)	0.496 (4)
H9	0.47 (5)	0.51 (2)	???
H10	0.47 (5)	0.47 (2)	0.49 (2) Dara uma

Multi= 0.507 (11) z=0.33 Exp= 0.53 (11) z=0.33 Exp_sem_outliers=0.495 (12) z=0.10 Para uma boa estimativa do ω_0 teorico era preciso medir a capacitância, mas os resultados da turma mostram que o valor nominal não é ruim.

Parâmetros do Circuito

	L (mH) Nom	L (mH) Multi	L (mH) Ajuste	RL (Ω) Nom	RL (Ω) Multi
H1	30 (1)	?	35 (4)	?	?
H2	29.9 (15)	?	29.6 (6)	?	8.0 (4)
Н3	?	29.9 (8)	30.2 (6)	?	7.8 (4)
H4	30.1 (15)	30.3 (12)	30.7 (zero)*	7.7 (4)	8.1 (2)
H5	?	30.4 (15)	19.4 (2)	?	?
Н6	?	30 (1)	30 (29)*	?	7.9 (6)
H7	?	30.300 (1515)	31.1 (5)	?	8.1000 (5648)
Н8	30.4 (15)	?	30.6 (2)	7.8 (4)	?
H9	29.9 (15)	?	-30.51	7.7 (4)	?
H10	30.1 (15)	?	31.8 (2)	?	?

Poucos grupos anotaram o valor nominal e mediram a resistência com o multímetro! Já discutimos isso em aula, não?


Tarefas 2 – para Relatório

- Meça V_c x t e V_L x t para a freqüência de ressonância
 - Faça um gráfico de V_C x V_L na freqüência de ressonância (modo XY do osciloscópio)
 - O que você esperaria obter caso os seus componentes fossem ideais?
 - O indutor é ideal? Você pode fazer um modelo simples para o indutor caso ele não seja ideal?
 - Da análise desse gráfico, obtenha os parâmetros físicos (valores e incertezas) das grandezas usadas no seu modelo.
- Ainda na ressonância, verifique a diferença de fase entre V_{C} e V_{L} .
 - O que era esperado? A diferença pode ser explicado pelo seu modelo não-ideal?

Problemas...

No modelo ideal, o gráfico de VcXVI era para resultar em uma reta y=-x (soma de vetores das tensões), mas como pode ser observado na figura (2), experimentalmente foram duas curvas, isso pode ser explicado pela resistência interna do indutor, que não é ideal.

A diferença de fase obtida entre Vc e Vl foi de $0(1)_o$, a incerteza alta foi devido ao ruido muito alto, que não conseguiu ser amenizado, porém o resultado ficou próximo do esperado (cujo valor

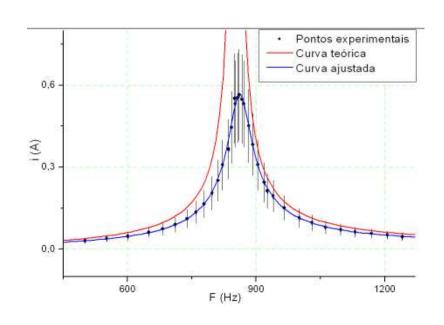
Tarefas 3 – EXTRAS

- Na análise de V_L x V_C na ressonância você se questionou apenas se o indutor não seria ideal.
 - E o capacitor é ideal? Você se questionou a respeito?
 - Você tem evidências experimentais de que o capacitor é próximo ao ideal? Quais (quantitativo)?
- Estime o valor da resistência interna do gerador a partir das medidas, ajustes e modelos não-ideias
 - Discuta a incerteza nesta medida, já que ela será obtida como um resíduo. Como você poderia diminuir esta incerteza?

Parâmetros do Circuito

	R1 (Ω)	RL (Ω)	RT (Ω) Resson.	RT (Ω) Ajuste	Rg (Ω)
H1	10.0 (5)	?	?	27 (3)	?
H2	10.2 (6)	8.0 (4)	?	21.5 (5)	3.3 (9)
Н3	10.0 (3)	7.9 (2)	?	20.2 (6)	4.5 (6) 2.3
H4	11.1 (2)	8.1 (2)	24.4 (8)	10.2 (zero)*	5.6 (2) 5.2
H5	?	?	?	33.3(6)	?
Н6	10.0 (6)	7.9 (6)	?	20 (19)*	2.1
H7	10.4 (6)	8.1 (6)	?	21.8 (2)	3.3
Н8	10.0 (6)	7.8 (4)	?	20.3 (4)	2.5
Н9	10.0 (1)	7.7 (4)	?	20.8 (2)	3 (1)
H10	11 (1)	?	? 🛕	23.2 (3)	?

Era fácil e poucos fizeram!


Revisão para o relatório

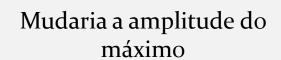
1. Resistência Total

Revendo tudo

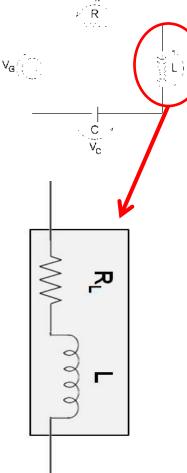
- Os dados não batem com a teoria, mas é possível ajustar uma curva, como a teórica, aos dados!
- Voltando a teoria. Qual a expressão para a corrente?

$$i_0 = \frac{V_G}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}}$$

Revendo tudo


- O indutor é ideal?
 - Não! A bobina é, na verdade um fio enrolado e tem resistência não nula
- Na equação R é a resistência total

$$i_0 = \frac{V_G}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}}$$


$$R_T = R + R_L + \cdots$$

• E a indutância? Será que o valor nominal é confiável?

Mudaria a posição do máximo

Como determinar R_{total}?

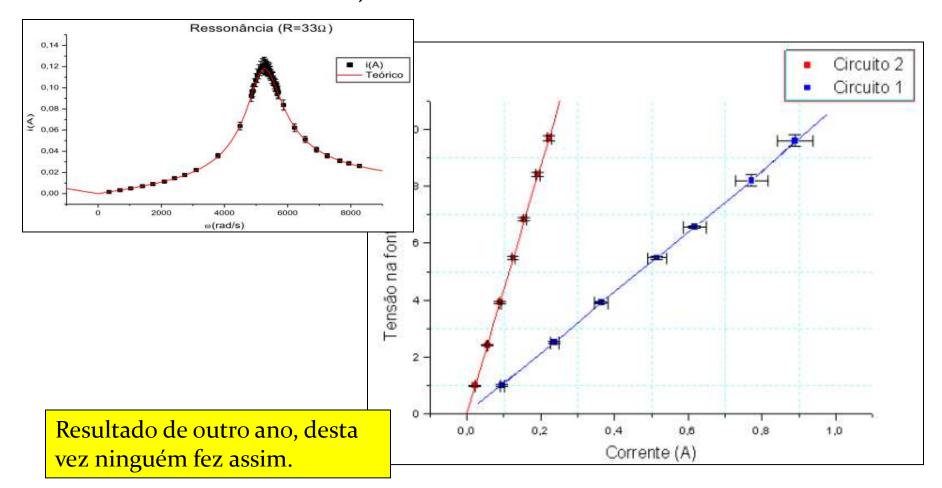
• Na condição de ressonância de corrente, $\mathbf{w} = \mathbf{w}_0$ e:

$$Z_{0} = \sqrt{R^{2} + \left(\omega L - \frac{1}{\omega C}\right)^{2}} \Rightarrow R$$

$$tg \,\phi_{0} = \left(\omega L - \frac{1}{\omega C}\right) \frac{1}{R} \Rightarrow \phi_{0} = 0$$

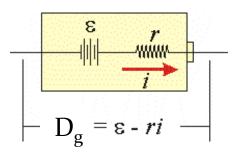
Se Φ₀=0, corrente e tensão estão em fase, o circuito é puramente resistivo

Portanto:


$$V_{G0} = Ri_0$$

 V_{60} é a tensão de pico aplicada pelo gerador e i_0 é a corrente de pico no circuito

• Ou seja, se medir V_{Go} e i_o na ressonância você descobre qual é a resistência total, **R**, do circuito

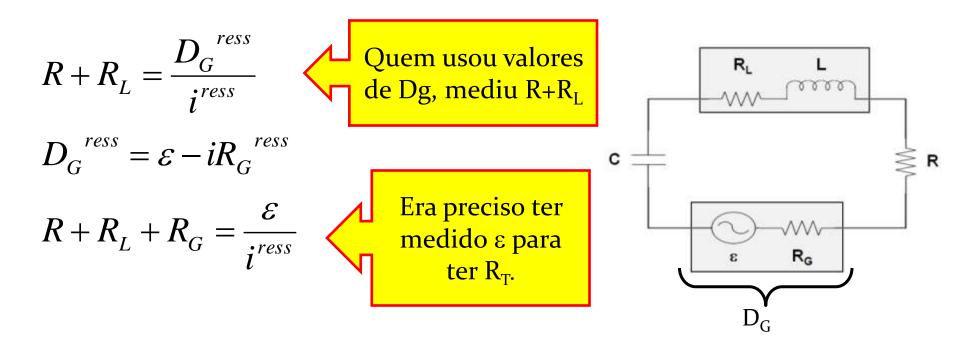

Como determinar R_{total}?

 O problema é que confiaríamos apenas em uma medida... Melhor ajustar uma reta:

Revendo a tensão do Gerador

- Como medir V_G?
 - Não confundir a tensão produzida pelo gerador com a ddp entre seus terminais (Dg)!

O gerador não é ideal e tem uma resistência interna (lab3)

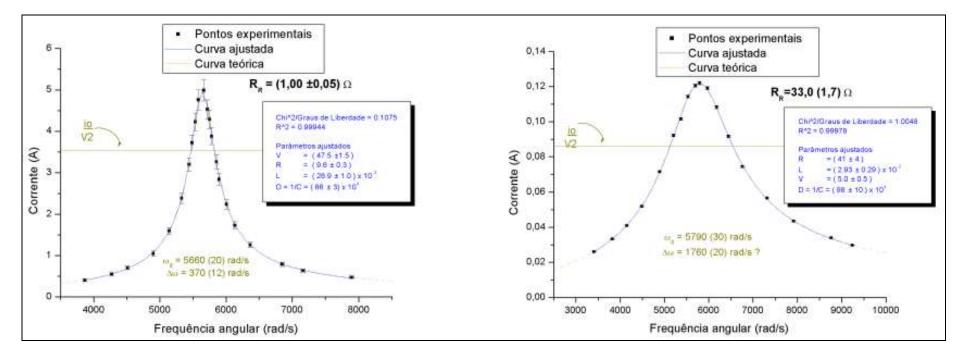

- Na nossa teoria, o que chamamos de V_G é na verdade ε!
 - ε devia ficar fixo, mas Dg não, pois a corrente varia.
 - Para determinar ε era preciso medir com o circuito "em aberto", ou seja com a corrente nula.
 - Isso podia ser feito com um multímetro (valor RMS) ou com o osciloscópio, mas não podia estar passando corrente pelo RLC.

Revendo as medidas de R_T

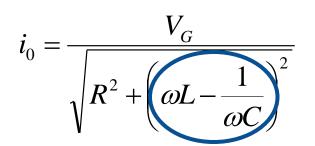
 A resistência podia ser calculada dividindo Dg pela corrente na ressonância:

$$R_T = \frac{D_G^{ress}}{i^{ress}}$$

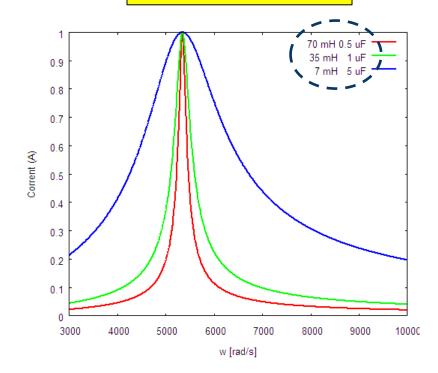
Mas notem que, em um circuito não ideal, o que temos é:



Como determinar R_{total}?


 Outra maneira, ajustando a curva teórica aos dados experimentais (mínimos quadrados):

$$i_0 = \frac{V_G}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}}$$


Podemos ajustar todos os parâmetros ao mesmo tempo?

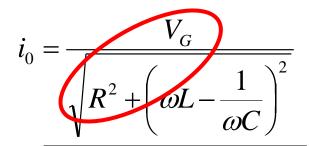
Ajuste dos parâmetros

Posição e largura do máximo

Posição

$$\omega L - \frac{1}{\omega C} = 0 \Rightarrow \omega_0 = \frac{1}{\sqrt{LC}}$$

Largura


$$i_0 = \frac{V_G}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}} \stackrel{definicao}{\equiv} \frac{V_G}{\sqrt{2R}}$$

$$\Rightarrow \omega = \frac{\mp RC \pm \sqrt{(RC)^2 + 4LC}}{2LC}$$

$$\Rightarrow \Delta \omega = \omega_{+} - \omega_{-} = \frac{R}{L}$$

Diferença entre as 2 raízes positivas

Ajuste dos parâmetros

Amplitude e largura do máximo

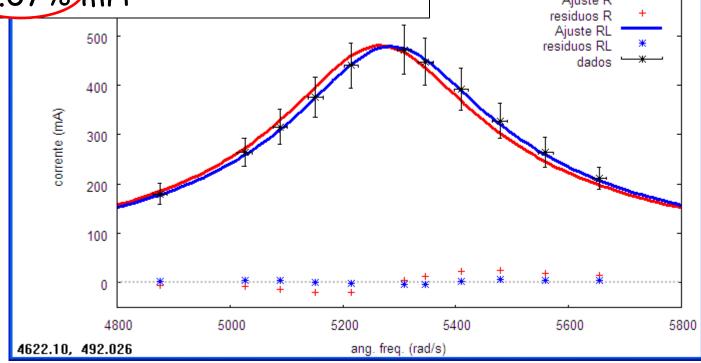
Amplitude

$$i_0(\omega_0) = \frac{V_G}{R}$$

Largura

$$\Rightarrow \Delta \omega = \omega_{+} - \omega_{-} = \frac{R}{L}$$

$$\begin{cases} LC \Rightarrow \text{posição} \\ V_G / R \Rightarrow \text{amplitude} \\ R / L \Rightarrow \text{largura} \end{cases}$$

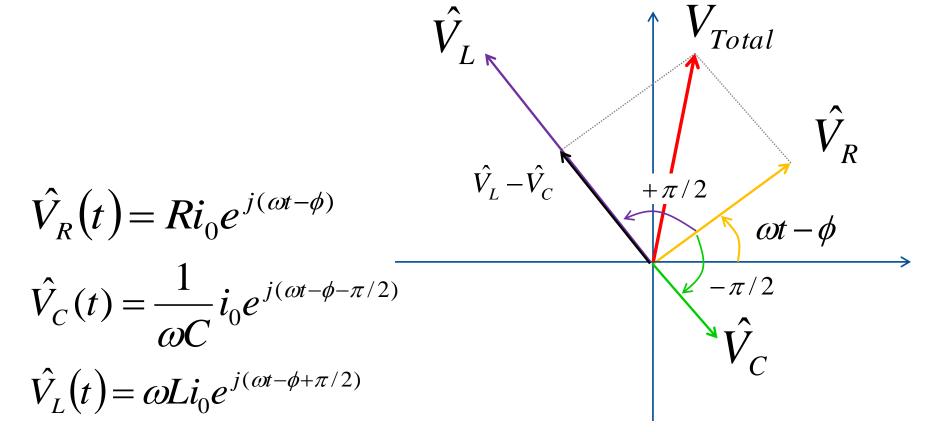

Apenas 3 "variáveis" independentes!

Ajustando $R_T = \omega_0$

- Apenas R, L fixo em 35(3)mH:
 - R=12.10(50) Ohm [grupo]
 - R=11.86 Ohm \pm 2.25% com X^2 red=337.0
- R e L ao mesmo tempo
 - R=11.90 Ohm + 0.6% com(X^2 red=23.3)
 - L=34.74 ± 0.07% mH

Melhor precisão medindo pela ressonância!

Melhor ajuste



Revisão para o relatório

2. Diagrama de fase

Diferença entre V_L e V_C

- Na ressonância, $V_L = V_C$ e $V_{tot} = V_R$
- Mas e se o indutor não for ideal ??

Diferença entre V e Vc

• Nesse caso, a tensão no indutor tem duas componentes! \hat{V}^{tot}

 $\hat{V_L}^{ideal}$

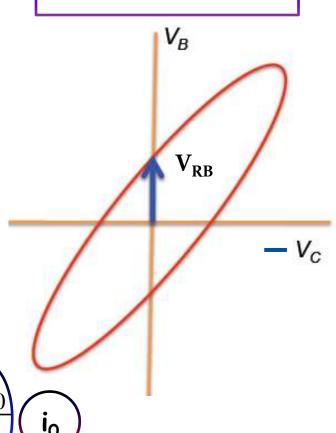
$$\hat{V}_C(t) = \frac{1}{\omega C} i_0 e^{j(\omega t - \phi - \pi/2)}$$

$$\hat{V_L}(t) = \hat{V_L}^{ideal} + \hat{V_L}^{res}$$

$$= V_L^{tot} e^{j(\omega t - \phi + \delta)},$$
onde $\delta = \tan^{-1} \left(\frac{\omega L}{R_L}\right)$

$$\hat{V_R}$$
 $\hat{V_L}^{res}$
 $\hat{V_L}^{res}$
 $\hat{V_L}^{res}$
 $\phi_{C-L} = \delta + \frac{\pi}{2} \stackrel{lab}{\approx} \pi - 4^o$
 $V_L^{real} = i_0 \sqrt{R_L^2 + (\omega L)^2} > V_L^{ideal}$

Diagrama de fase do RLC


Na condição de ressonância:

$$\omega = \omega_0 = \frac{1}{\sqrt{LC}} \qquad V_L = -V_C$$

- Observando V_B contra V_C:
 - quando V_C=0 , obrigatoriamente V_L=0 (estamos falando de valores instantâneos e não de valores médios),
 - portanto a tensão no eixo V_B é a tensão sobre a resistência da bobina, V_{RB}.

$$V_{RB} = R_B i_0 = R_B$$

Figura de Lissajous (RLC): V_BX V_C

Resumo dos pontos críticos

- A resistência total é R + R_L + R_G
- $\varepsilon_{\rm gerador}$ tem que ser medido com o circuito aberto. Caso contrário mede-se DDP_G.
- $\varepsilon_{\text{gerador}}$ devia ser fixo e não DDP_G.
- R_L nominal é confiável? Alguém mediu com o multímetro?
- Será que o indutor tem capacitância parasita entre as voltas do enrolamento?
- A diferença de fase devia ser ligeiramente menor do π , e V_L ligeiramente maior que V_C