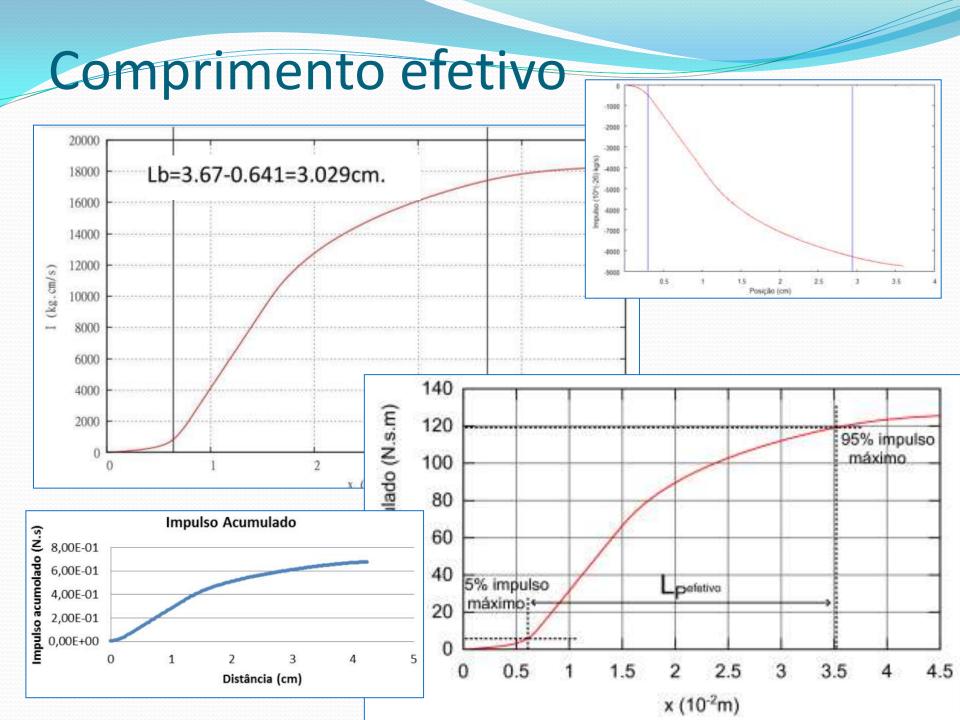
Seletor de Velocidades, Parte 6 – Discussão final do Seletor Aula 6

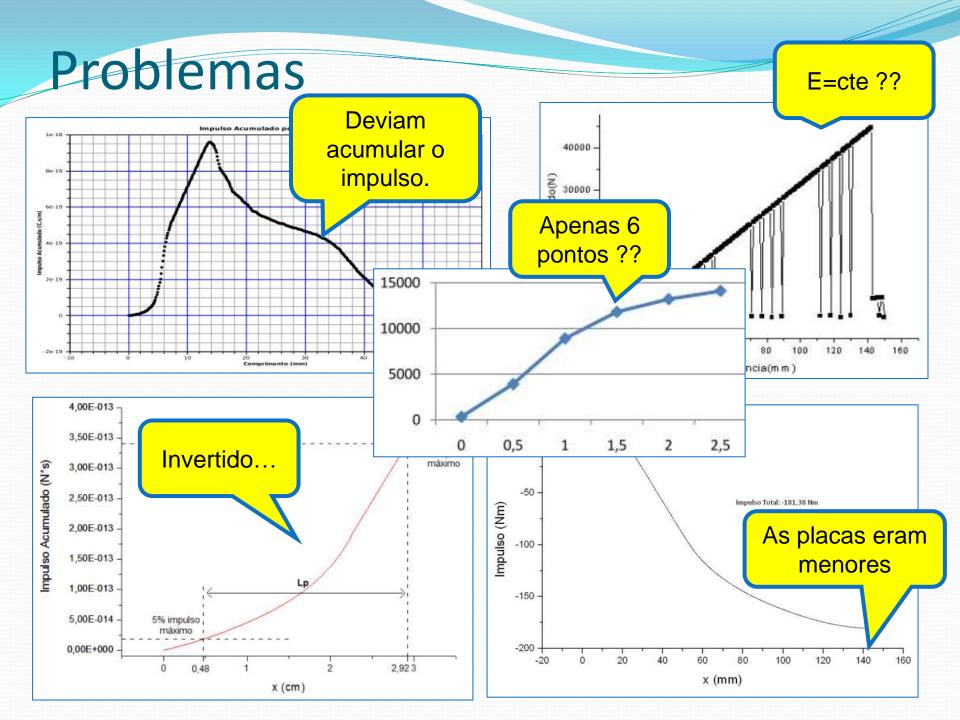
Prof. Henrique Barbosa Edifício Basílio Jafet - Sala 100 Tel. 3091-6647 hbarbosa@if.usp.br

http://www.fap.if.usp.br/~hbarbosa

Exp. 2 – Seletor de Velocidades

PROGRAMAÇÃO


- Semana 1
 - Movimento em campo elétrico
- Semana 2
 - Movimento em campo magnético
- Semana 3
 - Simular o campo elétrico e mapear o campo magnético
- Semana 4
 - Calibrar o seletor + Modelo Teórico
- Semana 5
 - Obter a resolução do seletor de velocidades


TAREFAS SEMANA PASSADA

Para entregar – parte 1

- Da simulação do campo, fazer o gráfico de impulso acumulado em função do comprimento.
 - Determinar o comprimento efetivo das placas (L_P)
 - Usar como limites 5% e 95% do impulso máximo acumulado como limites
 - Dica: use o Excel e faça a integral como a soma de pequenos retângulos
- Determinar a distância efetiva (d) entre as placas ideais de comprimento L_p para que elas provoquem o mesmo impulso total
- Comparar o comprimento geométricos do TRC e discutir

Problemas – Estimativa de d

A maioria não usou a área ?!? es de 5% e 95% do impulso máximo acumulado (≈6,48*10^-17 N*s)

=2,44cm. A distância efetiva (d) entre as placas de comprimento Lp

que provocam o mesmo impulso total foi calculada por $d = \frac{L_p}{2A'}L_c$, onde A' é obtido

através do gráfico de h por Vp (semana 1). Assim, d≈(2,02±0,05) mm.

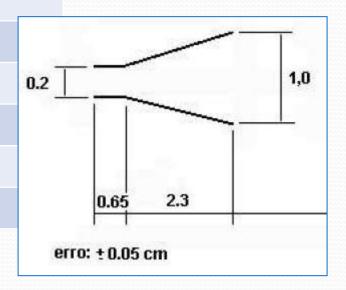
Um grupo usou o campo médio madas, com base nas tabelas que obtivemos no Excel, para os 5% e 95% da integral te x = 0,28 cm e x = 2,95 cm. Assim, a constante L_p pedida vale

$$L_p = 2,67 \text{ cm}.$$

O campo médio integrado nesse intervalo resulta $\langle E \rangle = -3,21 \times 10^3 \text{ N/C}$. Assim, a distância efetiva entre as placas será aquela em que o impulso médio será igual ao calculado, ou seja

$$\langle d \rangle = 2,67 \text{ mm}.$$

Um grupo usou a área!


tivo (região em que 5% e 95% do impulso é tranferido) encontrado foi $L_p = 60,000(2)mm$ como metade da distância entre dois pontos da simulação). Para encontar a distância cicura chure as piacas, fizemos

$$E_{ideal}L_p = \frac{V_pL_p}{d} = Area \leftarrow d = \frac{V_pL_p}{Area}$$

e obtivemos d = 7, 1(2)mm.

Tamanhos (mm)

Grupo	Lp (est.)	Lp (nom.)	d (est.)	d (nor	n.)
H1	10.7 (5)	8	?	?	
H2	?	?	?	?	
Н3	30.29 (?)	?	2.711 (50)*	2	
H4	29.1 (1)	40	2.08 (8)*	2	
H5	24.4 (?)	30	2.02 (5)	2	
H6	32.6 (?)	30	4.97 (31)	2	
H7	5 (1)	7	0.00765 (21)	2	
H8	26.7 (?)	?	2.67 (?)	?	0.2
H9	60.000 (2)	?	7.1 (2)	2	
H10	18.6 (?)	?	?	?	
h14					

Tarefas da Semana - Parte 2

 A partir da fórmula teórica para a seleção de velocidades deduzida por h_E=H_B, ie equilíbrio dos impulsos,

$$v_{0x} = \alpha' \frac{V_P}{i}$$
, onde $\alpha' = \frac{L_P}{L_B} \frac{1}{\beta d}$

Calculemos o L_B pelo mesmo método que acabamos de estimar L_P . Uma regressão do gráfico de $\beta \times x$, para x em milímetros, nos leva ao produto $L_B\beta$ como valendo 829 mm G. Os intervalos para a posição que nos devolvem 5% e 95% da área do gráfico retornam o valor L_B como sendo

$$L_B = 88 \text{ mm}.$$

O valor $\langle \beta \rangle$ médio adequado será aquele que, ao ser multiplicado por L_B , retornará 829, ou seja,

$$\beta = 9,42 \text{ G/A}.$$

Nossa constante α' será, portanto,

$$\alpha' = \frac{L_P}{L_B} \frac{1}{\beta \langle d \rangle}$$

$$\Rightarrow \alpha' = 1,21 \times 10^5 \text{ A/Gm}.$$

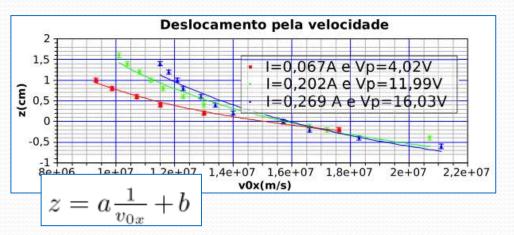
Calibração (m A / V s)

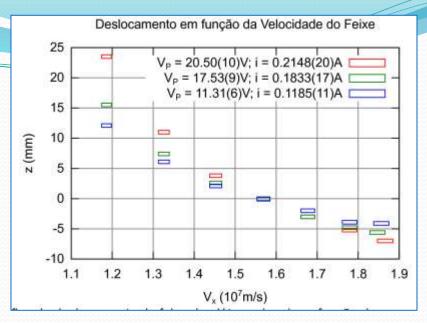
Grupo	Estimativa	Semana passada	
H1	2.50 (75) 10 ⁵	176 668 (2431)	
H2	?	?	
H3	1.85 (11) 10 ⁵	1.77 (5) 10 ⁵	
H4	1.80 (7) 10 ⁵	1.811 (10) 10 ⁵	
H5	1.99 (?) 10 ⁵	1.95 (45) 10 ⁵	
H6	11.76 (74) sem unid.	13 (3) sem unidades	
H7	11.23 (23)	1.92 (9) 10 ⁵	
H8	1.21 (?) 10 ⁵	1.57 (8) 10 ⁵	
H9	1.691 (30) 10 ⁵	1.74 (6) 10 ⁵	
H10	1.057263 (185) sem unid.	1.62 00000 (170) 10 ⁵	
h14			

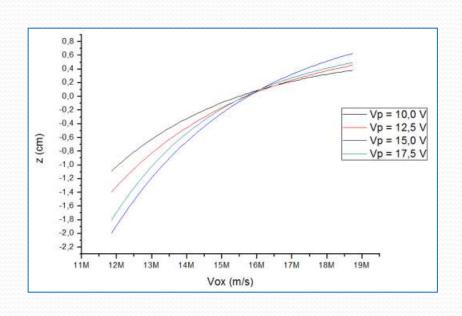
Para Entregar – Parte 3

- ▶ 1- Selecione uma velocidade v_x para passar sem desvio → V_{AC} → uma razão V_P/i.
- > 2- Varie V_{AC} , e, portanto v_{x_i} mantendo a razão V_P/i constante e levante a curva deslocamento $z \times v_x$.
- 3- Varie o valor de V_P e i, mantendo a razão constante, levante outra curva z x v_x.
- Repita esse procedimento para no mínimo 3 valores diferentes de V_p e i sempre mantendo a razão constante

Para entregar – Parte 4

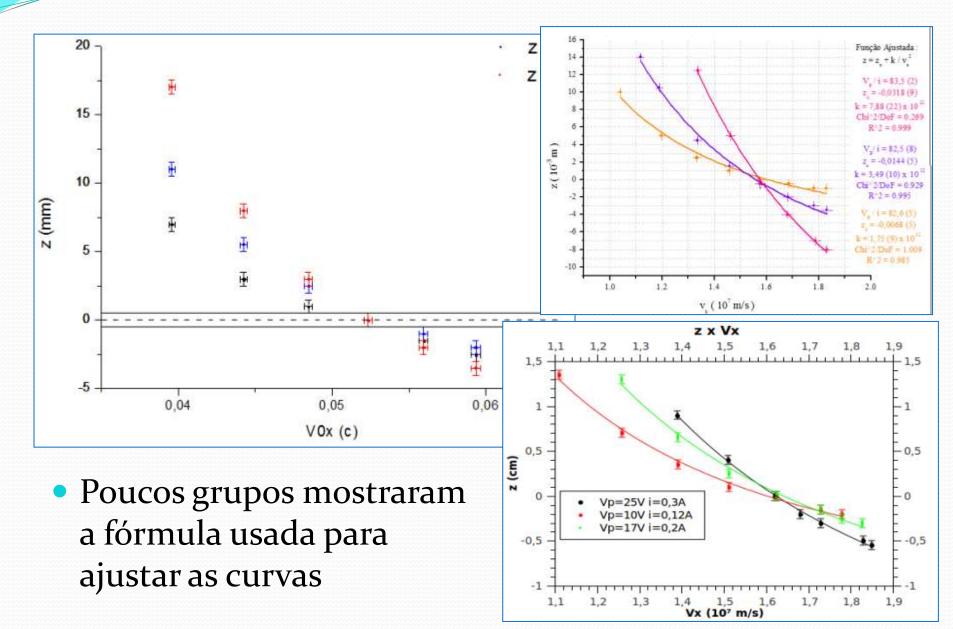

▶ 4- A partir da incerteza do deslocamento **z**, no gráfico **z** x \mathbf{v}_{x} , calcule a dispersão em \mathbf{v}_{x} → $\Delta \mathbf{v}_{x}$, para cada uma das curvas medidas.

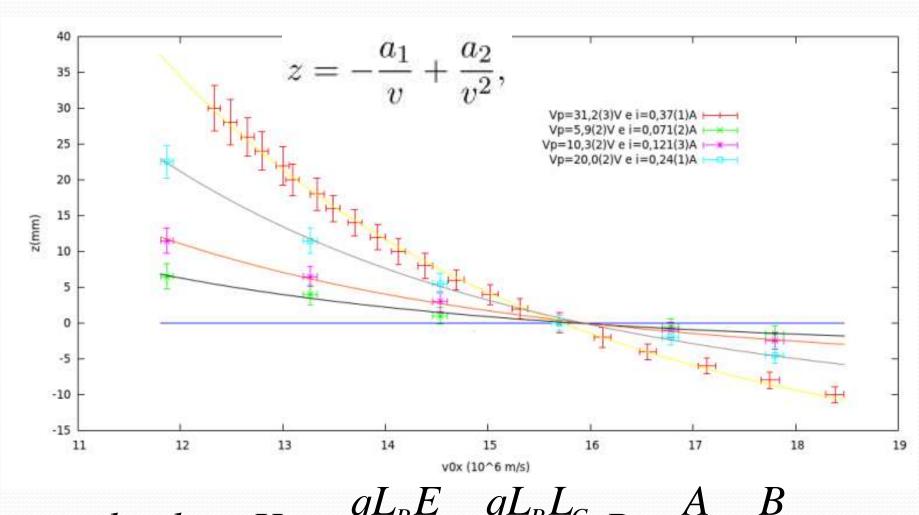

 5- Calcule a resolução em velocidade do instrumento para cada uma das curvas medidas.


$$R = \frac{\Delta v_x}{v_x}$$

 6- Comente suas observações, discuta o funcionamento do instrumento sob o ponto de vista da resolução.

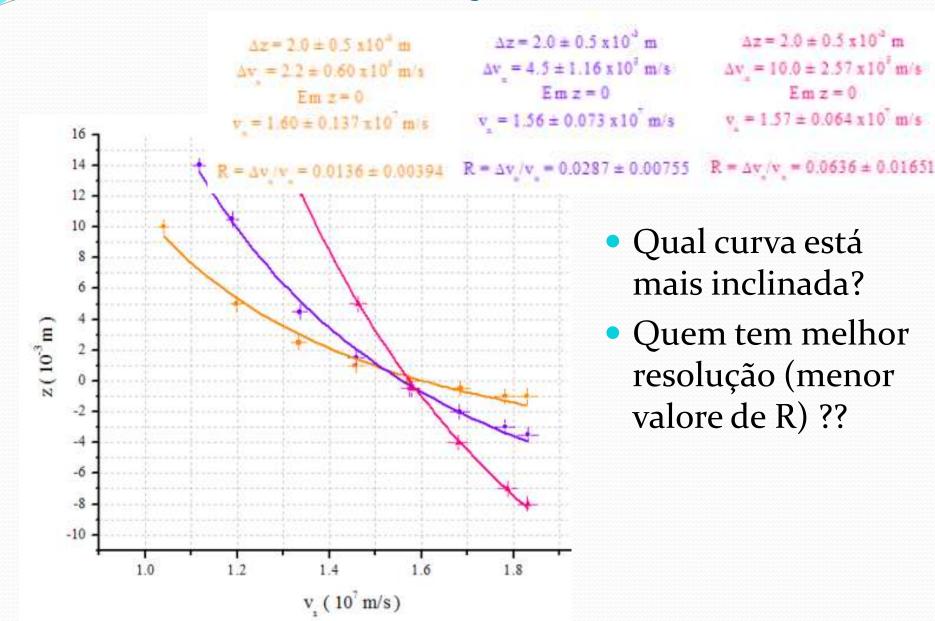
Resolução





Outros resultados

Qual era a fórmula correta?



$$h = h_E + H_B = \frac{qL_P E}{mv_{0x}^2} - \frac{qL_B L_C}{mv_{0x}} B \approx \frac{A}{v^2} + \frac{B}{v}$$

Resolução (%) x corrente

Grupo	Baixa	Média	Alta
H1	3.36	4.07	0.0669
H2	?	?	?
Н3	3.42	1.71	0.636
H4	10.4	7.7	6.3
H5	7.6	5.7	3.8
Н6	4.11 (26)	2.86 (18)	2.05 (11)
H7	1.36 (39)	2.87 (76)	6.36 (1.65)
Н8			11.7
Н9	3.4 (1.7)	6.2 (1.5)	3.3 (0.8)
H10	12.7	9.9	1.8
h14			

Problemas resolução

