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For biological populations with nonoverlapping generations, population 
growth takes place in discrete time steps and is described by difference 
equations. Some of the simplest such nonlinear difference equations can 
exhibit a remarkrible spectrum of dynamical behavior, from stable 
equilibrium points, to stable cyclic oscillations between two population 
points, to stable cycles with four points, then eight, 16, etc., points, through 
to a chaotic regime in which (depending on the initial population value) 
cycles of any period, or even totally aperiodic but bounded population 
fluctuations, can occur. This rich dynamical structure is overlooked in 
conventional linearized stability analyses; its existence in the simplest and 
fully deterministic nonlinear (“density dependent”) difference equations 
is a fact of considerable mathematical and ecological interest. 

1. Introduction 

In some biological situations (such as man), population growth is a continuous 
process and generations overlap; the appropriate mathematical description 
involves nonlinear differential equations. In other biological situations (such 
as 13 year periodical cicadas), population growth takes place at discrete 
intervals of time and generations are completely nonoverlapping; the appro- 
priate mathematical description is in terms of nonlinear difference equations. 
For a single species, the simplest such differential equations, with no time- 
delays, lead to very simple dynamics: a familiar example is the logistic, 
dN/dt = rN(1 -N/K), with a globally stable equilibrium point at N = K 
for all r > 0. But the corresponding simplest difference equations, with their 
built-in time lag in the operation of regulatory mechanisms, can have a 
complicated dynamical structure, the great richness of which is not commonly 
appreciated either in the ecological literature, or in elementary mathematical 
discussions of difference equations. 

For a single species, the difference equations arising in population biology 
are usually discussed as having either a stable equilibrium point or unstable, 
growing oscillations. In fact, some of the most elementary of these nonlinear 
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difference equations exhibit a spectrum of dynamical behavior, which, as the 
intrinsic growth rate r increases, goes from a stable equilibrium point, to 
stable cyclic oscillations between two population points, to stable cycles with 
four points, then eight points, and so on, through to a regime which can only 
be described as “chaotic” (an apt term coined by Li & Yorke, 1974). For any 
given value of r, in this chaotic regime there are cycles of period, 2, 3, 4, 
5, . . . , n, . , , , where n is any positive integer, along with an uncountable 
number of initial points for which the system does not eventually settle into 
any finite cycle; whether the system converges on a cycle, and, if so, which 
cycle, depends on the initial population point (and some of the cycles may be 
attained only from infinitely unlikely initial points). Figure 1 aims to illustrate 
this range of behavior. 
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FIG. 1. Spectrum of dynamical behavior of the population density, Nt/K, as a function of 
time, t, as described by the difference equation (1) for various values of r. Specifically: 
(a) Y = 14, stable equilibrium point; (b) r = 2.3, stable two-point cycle; (c) r = 2.6, 
stable four-point cycle; (d), (e), (f) are in the chaotic regime, where the detailed character 
of the solution depends on the initial population value, with (d) r = 3.3 (N,,/K = 0,075) 
(e) r = 3.3 (No/K = l-S), (f) r = 5.0 (No/K = O-02). 
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Specifically, consider the simple nonlinear equation 
N t + I = Nt exp IN - Nt/QI. (1) 

This is considered by some people (Macfadyen, 1963; Cooke, 1965) to be the 
difference equation analogue of the logistic differential equation, with r and K 
the usual growth rate and carrying capacity, respectively. The stability 
character of this equation, as a function of increasing r, is set out in Table 1, 
and illustrated by Fig. 1. 

TABLE] 
Dynamics of a population described by the dtrerence equation (1) 

Dynamical behavior Value of growth rate, r Illustration 

Globally stable equilibrium point 
Globally stable two-point cycle 
Globally stable four-point cycle 
Stable cycle, period 8, giving way in turn 

to cycles of period 16, 32, etc. as r 
increases 

2>r>O 

2.526 > r > 2 

2.656 > r > 2-526 

2.692 > r > 2.656 

Fig. l(a) 
Fig. l(b) 
Fig. l(c) 

Chaos (cycles of arbitrary period, or 
aperiodic behavior, depending on initial 
condition) 

r > 2.692 Fig. WI, @I, (0 

Another example is 

N f + 1 = N,[l + 4 -N,/Io] 
or, equivalently, defining x = (r/l +r)(N/K), 

x~+~ = (l+r)x,(l-x,). 

(24 

GW 
In the form (2b), this is probably the simplest nonlinear difference equation 
one could write down. Although discussed by various people (Maynard 
Smith, 1968; May, 1972; Krebs, 1972; Scudo & Levine, 1974) as the analogue 
of the logistic differential equation, equation (2) is less satisfactory than (1) 
by virtue of its unbiological feature that the population can become negative 
if at any point Nt exceeds K(1 +r)/r. Thus stability properties here refer to 
stability within some specific neighborhood, unlike equation (1) where, for 
example, the stable equilibrium point at N = K is globally stable (for all 
iV > 0) for 2 > r > 0. With this proviso, the stability behavior of equation (2) 
is strikingly similar to that of equation (1): see Table 2. 

The one-parameter difference equations (1) and (2) are treated in detail to 
give specificity to the discussion. It is to be emphasized, however, that the 
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TABLE 2 
Dynamics of a population described by the dyerence equation (2) 

Dynamical behavior Value of growth rate, r 

Stable equilibrium point 2>r>O 
Stable two-point cycle 2449 > r > 2 
Stable four-point cycle 2-544 > r > 2.449 
Stable cycles, period 8, then 16, 32, etc. 2.570 > r > 2.544 
Chaos r > 2.570 

phenomenon of a threefold regime of a stable point, giving way to stable 
cycles of period 2”, giving way to chaotic behavior, is a generic one which is 
liable to occur in any model for discrete generations with the possibility of 
strongly density-dependent population growth. Some other simple difference 
equations, which are mainly culled from the entomological literature and 
which exhibit the phenomenon, are as follows. (i) The equation 

N t+1 = A[1 +aNJVbNt 

has been used by Hassell (1974) to provide a two-parameter fit to a wide 
range of field and laboratory data, on single-species population growth: for 
relatively small values of b or of A there is a globally stable point; the con- 
junction of moderate values of b and R produces stable cycles; relatively large 
values of both b.and A leads to chaos. (ii) The density dependent form 

N 12 
t+1 = a’ ’ l+exp{A(N,-B)} 1 Nt 

discussed by Pennycuik, Compton & Beckingham (1968), by Usher (1972), 
and (in a limiting step-function form) by Williamson (1974), can also exhibit 
all three regimes as the two parameters A and B are varied. (iii) Similarly the 
class of models 

N ANt 
t+1 = 1 +(aNJ” 

the possible stable points of which have been discussed by Maynard Smith 
(1974), can show all three types of behavior as A and b vary. (iv) The density 
dependent equation 

N t+1 = lNt [if Nt < B] 

N t+i = Y4/WbW [if Nt > B], 

discussed by Varley, Gradwell & Hassell (1973), is an interesting example. 
Here, as a consequence of the pathological discontinuity, the stable point 
regime (0 < b c 2) gives way directly to the chaotic regime (b > 2), with no 
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intervening regime of stable cycles. (v) In all the above examples, the para- 
meters can take values such that the curve relating N,+, to Nt has a hump. 
To the contrary, the form 

N ANt 
t+1 

=---- 
l+aN, 

which is sometimes called the logistic difference equation (Skellam, 1952; 
Leslie, 1957; Utida, 1967; Pielou, 1969), gives a monotonic curve relating 
N t+1 and N,, and consequently it always leads simply to a globally stable 
equilibrium point. 

That such single species difference equations should describe populations 
going from stable equilibrium points to stable cycles as r increases is not 
surprising, in view of the general engineering precept that excessively long 
time delays in otherwise stabilizing feedback mechanisms can lead to “in- 
stability” or, more precisely, to stable limit cycles (see May, 1973, pp. 27-30 
and chap. 4; May, Conway, Hassell & Southwood, 1974). What is remarkable, 
and disturbing, is that the simplest, purely deterministic, single species models 
give essentially arbitrary dynamical behavior once r is big enough [r > 2.692 
for equation (l), r > 2.570 for equation (2)]. Such behavior has previously 
been noted in a meteorological context (Lorenz, 1963, 1964), and doubtless 
has other applications elsewhere. 

For population biology in general, and for temperate-zone insects in parti- 
cular, the implication is that even if the natural world was 100 % predictable, 
the dynamics of populations with “density dependent” regulation could none- 
theless in some circumstances be indistinguishable from chaos, tf the intrinsic 
growth rate r is large enough. 

Section 2 presents the stability analysis for the model (1) at smaller r, 
up to the regime of chaos; this section contains an explicit Lyapunov function 
to show the stable equilibrium point (for 2 > r > 0) is globally stable, and 
introduces some novel mathematical tricks to study the regime of stable 
cycles (for 2.692 > P > 2). Section 3 similarly gives the analysis of the model 
(2) at smaller r. Section 4 briefly outlines an abstract mathematical theorem, 
very recently proved by Li & Yorke (1974), which shows that if the system 

N t+ I = Ntf(N3 
has a cycle of period 3, then it also has cycles of period n, where IZ is any 
positive integer, so that its behavior is chaotic (in the sense defined above). 
This general theorem is then applied to the specific equations (1) and (2) to 
elucidate their behavior at larger r. Section 4 also speculates upon some of the 
tendencies evidenced by Fig. l(d), (e), (f), which suggest the need for further 
general mathematical analysis of such systems. Sections 5 and 6 briefly 
discuss some other biological and mathematical aspects of the problem. 
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2. Equation (1): Stable Points and Stable Cycles 

We begin by quickly recapitulating the standard linearized analysis for 
stable equilibrium points of difference equations such as (1), (2) or (3), 
because these general methods underlie the tricks subsequently introduced in 
the derivation of stable cycles. 

We first find the possible equilibrium points, and then study their stability. 
Using the general form of equation (3), equilibrium points where N,,, 
= Nt = N* are the solutions of 

j-(N*) = 1. (4) 

To examine the stability of such an equilibrium point with respect to small 
perturbations, write Nt = N* +x,, and linearize about the equilibrium point 
(neglecting initially small quantities of order x”) to get an equation for the 
population perturbation x, : 

Xt+1 = (1 -Ph. (5) 

Here, for notational convenience, we have introduced the definition 

Neighborhood stability clearly requires 11 -ccl < 1, which leads to the 
criterion 

2>p>o. (7) 

More specifically, if 1 > ,u > 0 the perturbations are monotonically damped, 
and if 2 > p > 1 they are damped in an oscillatory manner. 

Applied to equation (l), where f(N) = exp [r(l -N/K)], equation (4) 
leads to a unique equilibrium point at 

N” = K. (8) 

Next, equation (6) reduces to p = r, whence the requirement for this equili- 
brium point to be a stable one is 

2>r>O. (9) 

More particularly, perturbations are exponentially damped if 1 > r > 0, 
oscillatorilly damped if 2 > r > 1. 

The above constitutes a linearized stability analysis. However, in this 
instance we can construct a nonlinear Lyapunov function; that is, a function 
V, with the properties V, 2 0 and AF’, E V,, 1 - V, I 0. Such a function is 

v, = (N,--K)‘. (10) 
This clearly has the property V, 2 0, and for the quantity AV, we have 
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AK = Wt+, -N,)(N,+ 1 +N,-2K) for which it may be shown that 

AV, I 0 [for all Nt > 01, (11) 
if, and only if, 2 > r > 0. Therefore the linearized stability analysis is a valid 
characterization of the global, nonlinear stability properties, and the equili- 
brium point of equation (8) is globally stable for 2 > r > 0. This is a useful, 
if special, result. 

To study what happens when Y > 2 it is helpful to have recourse to the 
apparently novel trick of expressing N,,, as a function of N,: 

N t+2 = NtdNt), (12) 
where clearly the function g(N) is defined in terms of thef(N) of the general 
equation (3) by 

g(N) = fWftN.fN))~ (13) 
The analysis outlined three paragraphs above may now be repeated, step by 
step, using g(N) instead off(N), to seek stable solutions (N,,, = Nt = Nt-2, 
etc.) of the equation (12). Such solutions will lead to stable two-point cycles 
of the kind depicted in Fig. l(b). 

Applying this trick specifically to equation (l), we have 

g(N) = exp [r-(2-s{exp [r(l -:)I + I})]. (14) 

Possible equilibrium solutions, N*, follow from 

g(N”) = 1, (15) 
that is, 

2 = (N/K)(exp [r(l -N/K)] + 1). (16) 
By writing 

N” E K(l + y), (17) 
equation (16) may be manipulated into the form 

y = tanh (+ry). (18) 
A graphical way of solving this transcendental equation is indicated in Fig. 2. 
The essential point is that if r -C 2, there is only one real solution, namely 
y = O(N* = K), corresponding to the globally stable equilibrium point 
already discovered for r < 2. However, for r > 2 there are three real solu- 
tions: the trivial solution y = 0, and a pair of solutions y = +y,-, (with 
y0 < 1) as indicated in Fig. 2. It may further be shown by the techniques 
discussed above that the solution y = 0 is always unstable for r > 2, but 
that each of the pair of solutions N* = K(1 j-yO) is stable provided 

2 > r[2-r(l-yg)] > 0. (19) 
The quantities r and y, are themselves related by equation (1X), whence 
equation (19) eventually comes down to the constraint r -=c 2.526. 
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RG. 2. Graphical solution of equation (18). The straight line depicts the function 
f(y) = y  [the left-hand side of equation (1811; the dashed curve illustrates the function 
tanh (&+y) if I < 2 (specilkally, r = l), so that the slope near the origin is less than y, and 
here the only solution of equation (18) is at y  = 0; the solid curved line illustrates tanh (+ry) 
if r > 2 (specifically, r = 4), so that the slope nea.r the origin is greater than y, and here 
there are necessarily three real solutions of equation (18), at y  = 0 and y  = i yo. 

Thus for r < 2 equation (1) has a stable equilibrium point at N* = K, 
but as Y increases beyond 2 this solution becomes unstable, and bifurcates 
into a pair of points N * = K(1 +yO), between which the population alternates _ 
in a two-point cycle which is stable provided 2 < r c 2.526. Extensive 
numerical studies suggest this two-point cycle is globally stable for these 
values of r. 

Beyond Y = 2.526, the two-point cycle in turn becomes unstable, and each 
of the points bifurcates into two further points, giving a stable four-point 
cycle, as illustrated in Fig. l(c). The details of this process can be elucidated 
by studying the relationship 

N t+4 = Nt WJ cw 
which follows from the general equations (3) and (12) with 

WI = m7SWdN)). (21) 
For equation (l), h(N) then follows from equation (14), and we can compute 
the equilibrium solutions and their stability, along the lines laid down above. 
We find that for r < 2526 the only real solutions of h(N*) = 1 are the three 
points just discussed. However, for larger r not only are all these points 
unstable, but there emerge four further real solutions, which lead to a stable 
four-point cycle for Y < 2.656. 
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Beyond r = 2.656 there lies a stable eight-point cycle, then a stable 16-point 
cycle, and so on. Notice that as the period of the various cycles increases, the 
range of r values for which they are stable decreases : the equilibrium point is 
stable for a band of r values of width two, the two-point cycle is stable in a 
band of width 0.526, the four-point cycle in a band of width 0.130. In 
section 4 it will be shown that eventually, for r > 3.102, the system has 
entered the chaotic regime; however, the full details of the transition from 
the regime of stable cycles (with systematically increasing periods of length 
2”), to the chaotic regime, has so far defied analysis.7 

Note that, independent of the details of the dynamics, the population 
variations must eventually lie between finite upper and lower bounds, N+ 
and N- respectively, for all values of r and for all initial population values. 
For the upper bound5 observe that regardless of the initial value, equation (1) 
implies the population in the subsequent generation cannot exceed the 
maximum of the functionf(x) = KX exp [r(l -x)1, which maximum occurs 
at x = l/r; that is 

N 
+ 

= K exp (r - 1) 
r ’ (22) 

Although extreme initial conditions can keep the population low at first, 
ultimately the smallest possible population is that attained one step after the 
N, of equation (22), and thus has the value 

N- = N, exp [r(l-N+/R)]. (23) 
The ratio between these upper and lower bounds provides a measure of the 
population variations liable to occur once r increases substantially beyond 
two : 

N+/N- = exp [exp(r-1)-r]. (24) 
The magnitude of this ratio is obviously sensitively dependent on the value 
of r as r increases. 

3. Equation (2) : Stable Points and Stable Cycles 
Following the recipes outlined in the previous section, the analysis of 

equation (2) is analogous to that of equation (1). 
First observe that the only possible equilibrium point, given by the solution 

of equation (4), is N* = K. The formula (6) gives p = r, whence from 
equation (7) this point is stable if, and only if, 2 > r > 0. In contrast with the 
global result obtained in the previous section, this equilibrium point is stable 
only to perturbations which are not too large. For all r > 0, a disturbance to 
Nt > K(r+ 1)/r leads in the next time step to a negative Nt+l, and all sub- 
sequent Nt + k are necessarily negative, diverging towards - co. Biologically, 

t See note added in proof. 
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of course, such negative values of N imply extinction; but these features of 
the model (2) make it in some respects less satisfying than (1). 

For r > 2, we again turn to study the possibility of stable two-point 
cycles, using equations (12) and (13) : here g(N) may usefully be written in the 
form 

g(N) = 1 -r31c3(N-K)(N-NA)(N-NB), (25) 
with the definition 

N A,B = (K/2r)[r+2+(r2-4)*]. (26) 
We see that if r < 2, there is only one real solution of the equation g(N*) = 1, 
namely the familiar point N* = K. But once r > 2, this solution becomes 
unstable, and two new solutions of equation (12) split off on either side of it, 
at N* = NA, NB. These two new points will be stable if equation (7) is satis- 
fied, where here 

r2-4. (27) 

Thus equation (2) will have a stable two-point cycle if, and only if,J6 > r > 2, 
as set out in Table 2. 

Again, as r increases beyond & each of these two points bifurcates, to 
give stable four-point cycles if 2.544 > r > 2449; and so on. As for the 
previous example, the next section shows that eventually a regime of chaos is 
established for r > 2.828. Again, the details of the transition zone where 
stable cycles of period 2” merge into the chaotic regime are not yet elucidated.? 

4. Three-point Cycles and Chaotic Behavior 

Motivated by earlier work of Lorenz (1963, 1964), published in the 
meteorological literature, Li & Yorke (1974) have very recently proved an 
abstract mathematical theorem which is relevant to our present discussion of 
ecological equations such as (1) and (2). Suppose the general difference 
equation (3) has a three-point cycle, that is a solution such that Iv,,, = Nt 
= N*, with N,,, # Nt+2 # N*. It then necessarily follows that there are 
also cycles with period ~1, where n is any positive integer, and furthermore that 
there are an uncountable number of initial points NO from which the system 
does not eventually settle into any of these cycles (that is, is not “asympto- 
tically periodic”). In these circumstances, whether the system will converge 
upon one of the cycles, and, if so, which cycle, depends on the starting point, 
No. 

We now apply this general mathematical theorem to the ecologically 
interesting equations (1) and (2). First we seek a cyclic solution, with period 3, 

t See note added in proof. 
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for equation (1). For notational convenience, write the three points in such a 
cycle as N1 = aK, N2 = bK, N3 = cK: then a, b, c (with a < b < c) are 
given by 

b = a exp [r(l-a)] 

c = b exp [r(l- b)] (28) 

a = c exp [r(l -c)]. 

With the help of the observation that a+ b+c = 3, it may be seen that a is 
the smallest solution of the transcendental equation 

In {3/a-l-exp[r(l-a)]} 
r = 2-a-a exp [r(l-a)] ’ (29) 

Figure 3 illustrates the behavior of these solutions a, b, c as functions of r. 
For r above r, (where rc = 3.102) there are two distinct three-point cycles; 
below rc = 3.102 no such cycles exist. 

The dynamical behavior of equation (1) in this chaotic regime, r > r,-, is 
illustrated in Fig. l(d), (e), (f). F’g I ure l(d) and (e) are for the same value of r, 
and differ only in their initial population value. Note that Fig. l(d) or (e), if 
looked at only over particular short time intervals, could convey the impres- 

FlG. 3. Values of the three population points Nl = c%, Nz = bK, Na = cK, with 
a < b < c, in the three-point cyclic solution of equation (l), as functions of r. The curve 
for a is according to the right-hand scale (from O-0.03), and the curves for b and c are 
according to the left-hand scale (from O-3). Notice there is no solution for r < 3-102. 
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sion of being locked into a three-point cycle; there is a tendency to be 
“captured” into almost-periodic three-point cycles, in between episodes 
of apparently chaotic behavior. A detailed understanding of these properties 
remains an interesting mathematical problem, related to that of determining 
what fraction of the totality of initial points converge to a three-point cycle, 
what fraction to a five-point cycle, and so on, ending with a determination of 
the fraction of initial points which lead to aperiodic behavior. 

For relatively large values of Y beyond rc [e.g., Fig. l(f)], the population 
fluctuations become more severe, as indicated earlier by the asymptotic 
upper and lower limits (22) and (23). Notice, however, that the mean popula- 
tion remains around the value K, as follows from the remark that for equa- 
tion (1) . , 

>I , 
that is, 

j-l 
izo j~,+~ = jK[l -(l/rj) ln (N,+j/NJ]* 

Thus, for a long time sequence, j % 1, we have 

(N) N K. (32) 
As r becomes large, this mean value is increasingly constituted of a few fairly 
large population values, together with long sequences of very low population 
values [e.g., Fig. l(f)]. Very approximately, we may observe from equa- 
tion (22) that the large fluctuations will have an amplitude around K[exp 
(r- 1)1/r, and will consequently on the average be spaced (l/r) exp (r- 1) 
time intervals apart. This gives qualitative insight into the numerical results. 

It remains to find the value of r which marks the onset of three-point cycles, 
and consequent chaos, in equation (2). To this end, we use the form (2b), and 
seek solutions a < b < c such that 

b = (l+r)a(l-a) 

c = (l+r)b(l-b). (33) 
a = (l+r)c(l-c) 

Numerical computations reveal that such real solutions can be found if, and 
only if, r > 2.828. [Li & Yorke (1974) have already remarked, by way of an 
example, that this difference equation has three-point cycles once r 2 3.1 

5. Multispecies Difference Equations 

The above discussion is restricted to single species systems obeying differ- 
ence equations. Similar considerations are likely to apply, a fortiori, to 
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multispecies situations. Here analytic results are hard to come by; some 
numerical studies are reported elsewhere (May, 1974a). 

6. Discussion 

Equations (1) and (2) are two of the simplest nonlinear difference equations 
to be found. Their rich dynamical structure is a fact of considerable mathe- 
matical interest, which deserves to be more widely appreciated. 

Previous work in this general area of population biology includes, inter 
ah, remarks on the relation between differential equation models and 
difference equation models (Van der Vaart, 1973; May, 1972), and on the 
equivalence between difference equations and differential equations with 
explicit time-delays (May et al., 1974; Maynard Smith, 1968; McMurtrie, 
1974). Earlier discussions of the stability properties of equations (1) and (2) 
consist of linearized analyses showing the equilibrium point is in both cases 
only stable for 2 > r > 0 [Cook, 1965 for (1); Maynard Smith, 1968 for (211, 
with larger r usually dismissed as “unstable, with diverging oscillations”. 
Very recently, May (1974b) has noted the stable two- and four-point cycles 
for these equations when r > 2, and Scudo & Levine (1974) have indepen- 
dently noted the two-point cycle behavior in equation (2). 

The transition, as r increases beyond r,-, into a regime of apparent chaos, 
with cycles of essentially arbitrary period possible, is a result /with many 
ecological implications. It could be particularly relevant to temperate insect 
populations, where the natural description is in terms of nonlinear or “density 
dependent” difference equations, often with relatively large r. In conclusion, 
it may be emphasized that without an understanding of the range of behavior 
latent in deterministic difference equations, one could be hard put to make 
sense of computer simulations or time-series analyses of such models. 

I am indebted to R. E. McMurtrie, G. F. Oster, and a reviewer (J. R. Beddington) 
for helpful comments. I particularly thank 5. A. Yorke for drawing his very elegant 
work to my attention. 
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Note added in proof: 

These analytic difficulties have recently been resolved (May & Oster, to 
be published). Tables 1 and 2 incorporate these latest results, and give an 
accurate description of the dynamical behavior of equations (1) and (2). 


