Prof. Henrique Barbosa hbarbosa@if.usp.br

Ramal: 6647 Ed. Basílio Jafet, sala 100

Física Experimental IV - FAP214

www.dfn.if.usp.br/curso/LabFlex www.fap.if.usp.br/~hbarbosa

Aula 4, Experiência 2 Fourier e Difração

Fonte: apostila de óptica do lab4 e notas de aula dos Prof. A. Suaide e E. Szanto

Computador Ótico

Plano Lourier

... que aparece no plano de Fourier e pode ser filtrada

A 2^a lente faz a transforma inversa

Projetamos a imagem filtrada no anteparo

Objeto

11

o laser ilumina o objeto

COMPUTADOR ÓTICO

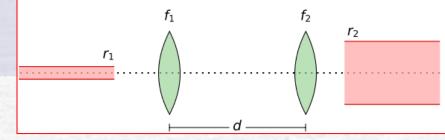
Para esta Semana: Parte 1

- Utilizando duas lentes convergentes de foco f1 e f2, separadas de uma distância d, obtenha, utilizando o método matricial:
 - Qual a distância de separação entre elas (d) para que o feixe de laser saia sem divergência?
 - Qual a magnificação obtida por este sistema?
 - Verifique os resultados com o Raytrace
- Monte um sistema de duas lentes para magnificar o feixe de laser em 20 vezes, mantendo-o paralelo na saida
 - meça a magnificação. Compare com a expectativa teórica.
 - meça a distância entre as lentes e compare com a expectativa teórica.

> Problemas:

- O feixe emergente do sistema tem divergência nula? Verifique.
- O feixe incidente no sistema possui divergência? O que muda, do ponto de vista teórico se a divergência inicial do laser não é nula? O experimento é sensível a isto? Discuta.

Método matricial



• Aplicando o método matricial:

$$\begin{bmatrix} r_2 \\ \phi_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1/f_2 & 1 \end{bmatrix} \begin{bmatrix} 1 & d \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1/f_1 & 1 \end{bmatrix} \begin{bmatrix} r_1 \\ \phi_1 \end{bmatrix}$$

Notem que não era preciso incluir as posições do objeto e da imagem!

• E portanto:

$$\begin{cases} r_2 = \left(1 - \frac{d}{f_1}\right)r_1 + d\phi_1 \\ \phi_2 = \left(\frac{d}{f_1 f_2} - \left(\frac{1}{f_1} + \frac{1}{f_2}\right)\right)r_1 + \left(1 - \frac{d}{f_1}\right)\phi_1 \end{cases}$$

• $\phi_1 = \phi_2 = 0$ (ou seja $f_{eq} \rightarrow \infty$) implica:

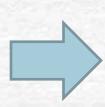
$$r_1\left(\frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1f_2}\right) = 0 \implies d = f_1 + f_2$$

Aumento do Diâmetro

• Substituindo d=f₁+f₂ nas equações para r₂ e ϕ_2 , temos:

$$\begin{cases} r_2 = \left(1 - \frac{d}{f_1}\right)r_1 + d\phi_1 \\ \phi_2 = \left(\frac{d}{f_1f_2} - \left(\frac{1}{f_1} + \frac{1}{f_2}\right)\right)r_1 + \left(1 - \frac{d}{f_1}\right)\phi_1 \end{cases}$$

$$\begin{cases} r_2 = -\frac{f_2}{f_1}r_1 + (f_1 + f_2)\phi_1 \\ \phi_2 = -\frac{f_1}{f_2}\phi_1 \end{cases}$$



$$\begin{cases} r_2 = -\frac{f_2}{f_1}r_1 + (f_1 + f_2)\phi_1 \\ \phi_2 = -\frac{f_1}{f_2}\phi_1 \end{cases}$$

Como φ₁=0 então temos:

$$M = \frac{r_2}{r_1} = -\frac{f_2}{f_1}$$

• ... e $\phi_2 = 0$

E se a divergência $\phi_1 \neq 0$?

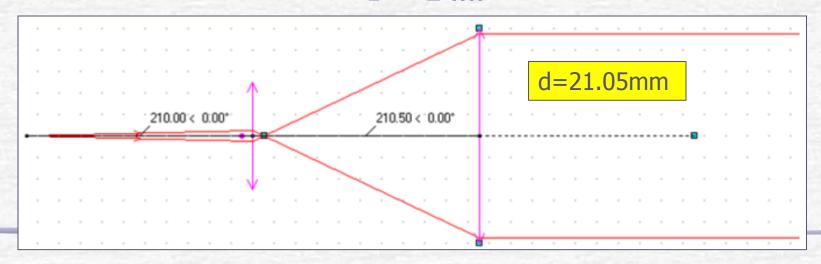
Se mantivermos a distância d=f₁+f₂:

Para o conjunto de lentes utilizadas, d=21,0(2)cm. Porém, na prática, o feixe incidente possui um pequeno ângulo de incidência, considerando a distância entre as lentes de 21 cm, temos que a relação entre os ângulos é:

$$\frac{\varphi_2}{\varphi_1} = -\frac{f_1}{f_2}$$

Ou seja, o ângulo emergente é 20 vezes menor que o de incidência.

• Mas se queremos que ϕ_2 =0, então **não** podemos usar d= f_1+f_2



E se a divergência $\phi_1 \neq 0$?

• Neste caso, devemos usar a equação completa:

$$\phi_2 = \left(\frac{d}{f_1 f_2} - \frac{1}{f_1} - \frac{1}{f_2}\right) r_1 + \left(1 - \frac{d}{f_2}\right) \phi_1 = 0$$

• Resolvendo a equação para d, temos:

$$d = f_2 + \frac{f_1}{1 - f_1 \phi_1 / r_1} = f_2 + f_1 \left(1 + f_1 \frac{\phi_1}{\underline{r_1}} \right)$$

Ou seja, a correção é pequena!

$$d \approx 20cm + 1cm * 1.01 \approx 21.01cm$$
 $10^{-2} \Leftarrow \begin{cases} \phi_1 = 1 \text{ mrad} \end{cases}$

Analogamente p/ a magnificação:

$$\frac{r_2}{r_1} \approx \frac{-f_2}{f_1} \left(1 - f_1 \phi_1 / r_1 \right) \approx \frac{-f_2}{f_1} * 0.99 \approx 19.8$$

 $\int f_1 = 1cm$

 $r_1 = 1mm$

E se a divergência $\phi_1 \neq 0$?

Alguns mediram a divergência do feixe:

Os resultados experimentais da medida da divergência do laser encontram-se na figura 4.1, em que se ajustou o diâmetro do feixe em função da distância ao ponto de emissão 4 .

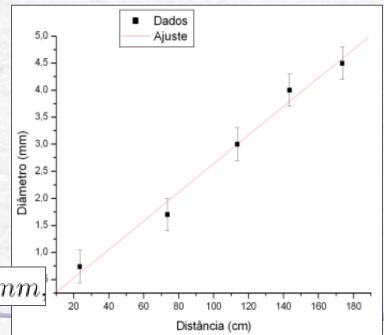
Obteve-se o coeficiente linear $b = (-0, 22 \pm 20) \cdot 10^{-2} \ mm$, que está relacionado ao diâmetro do laser, e o coeficiente angular $a = (0, 0264 \pm 0, 0017) \cdot 10^{-1}$. Apesar da razoável incerteza, devida a imprecisão da medida, obtivemos a partir do ajuste um ângulo de divergência de $\phi_1 = \arctan(a) = (2, 64 \pm 0, 17) \cdot 10^{-3} \ rad$, que é pequeno em relação as dimensões do nosso experimento.

angular
$$a = (0,0264 \pm 0,0017) \cdot 10^{-1}$$
.

$$\phi_1 = \arctan(a) = (2, 64 \pm 0, 17) \cdot 10^{-3} \ rad,$$

O coeficiente linear era o diâmetro do feixe na origem, mas com poucos pontos é difícil de medir:

coeficiente linear
$$b = (-0.22 \pm 20) \cdot 10^{-2} \ mm$$



Magnificação

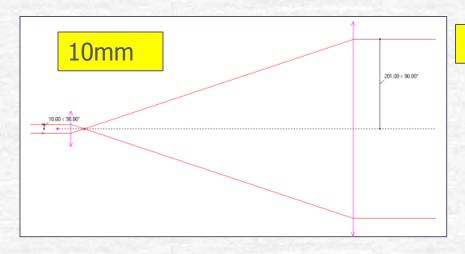
O ajuste linear dos dados da tabela 4.2 teve como coeficiente angular $a = (0,0042 \pm 0,0028) \cdot 10^{-1}$, que é compatível com zero. Consideraremos, assim, o diâmetro emergente médio dado por $\overline{D} = 30,92 \pm 1,0 \ mm$ e o diâmetro incidente⁶ do laser na primeira lente dado pelo ajuste do grafico da divergência do laser, que vale $d_1 = 1,80 \pm 0,21 \ mm$. Obteve-se, então

$$M = \frac{\overline{D}}{d_1} = 17, 2 \pm 2, 1$$

Distância r (cm)	Diâmetro D (mm)
$9,10 \pm 0,05$	$30,9 \pm 1,0$
$19, 10 \pm 0, 05$	$30,6 \pm 1,0$
$24, 10 \pm 0, 05$	$30, 8 \pm 1, 0$
$39, 10 \pm 0, 05$	$31,0 \pm 1,0$
$49, 10 \pm 0, 05$	$31, 1 \pm 1, 0$
$59, 10 \pm 0, 05$	$30,8 \pm 1,0$
$69,10 \pm 0,05$	$31, 1 \pm 1, 0$

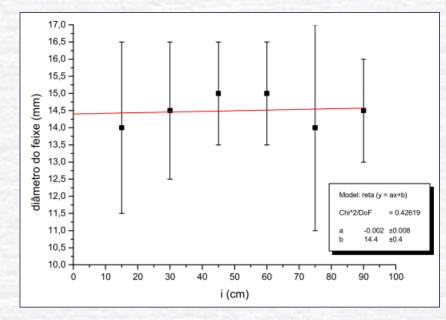
Não era necessário fazer várias medidas do diâmetro do feixe em função da distância, mas assim temos maior confiança que o feixe de saída é paralelo e é possível calcular um valor médio para a magnificação.

Outros resultados



201mm

M~20.1



Desta forma obtivemos que o diâmetro médio é igual a 14,4(4) mm, dado o resultado obtido anteriormente, temos que M =18,7(2,0) que é compatível com o modelo teórico em 63% através do teste T de Student.

Resultados da turma

		Entrada		Saída		
	d (cm)	Ø (mm)	div (mrad)	Ø (mm)	div (mrad)	M
H1	20.3 (13)		1.07 (4)	14.4 (4)	~0	18.7±2.0
H2		1.6 (3)	-3.2 (40)	32.1 (20)		20 (4)
Н3	20.80 (5)	1.80 (21)	2.64 (17)	30.92 (100)	~0	17.2 (21)
Н4	21.52 (5)	1.95 (4)	5.7 (1.9)	16.4 (22)	~0	8.391 (10) 22.466 (6)
Н5		0.56 (14)	3.96 (10)	21.5		21.5 (11)
Н6		2 (2)		23 (2)		
Н8	22.41 (5)	0.9 (5)		19.2 (5)		21.23 (32)
Н9						
H10	21.10 (5)		>0		~0	19 (4)
H11			3.1 (7)	17.44 (28)	0.41 (178)	19.6 (14)

Como o erro em d pode ser 0.5mm? Se é a diferença entre duas posições no trilho, devia ser pelo menos 0.5*raiz(2)~0.7mm

Para esta Semana: Parte 2

- Fotografe figuras de difração para os seguintes objetos:
 - o fendas simples (pelo menos duas fendas)
 - o fenda dupla (pelo menos duas fendas)
 - o fio de cabelo
 - todos os objetos na linha superior do slide de fendas
- Discuta os resultados obtidos.
 - Para as fendas simples e duplas tente relacionar as figuras observadas com as dimensões dos objetos.
 - Tente identificar a forma geométrica dos objetos na linha superior do slide de fendas a partir das figuras de difração observadas. Discuta.

Fenda Simples

d2 d1 d3 As fendas mais estreitas separam mais o feixe e assim vemos apenas o máximo central e os primeiros

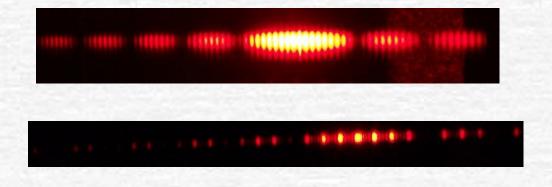
secundários.

Fenda Dupla

Algo semelhante acontece com as fendas duplas, mas nesse caso o que está variando é a separação e temos um aumento dos pequenos máximos...

Figura 5

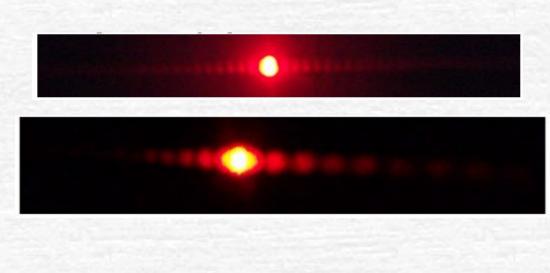
Figura 6



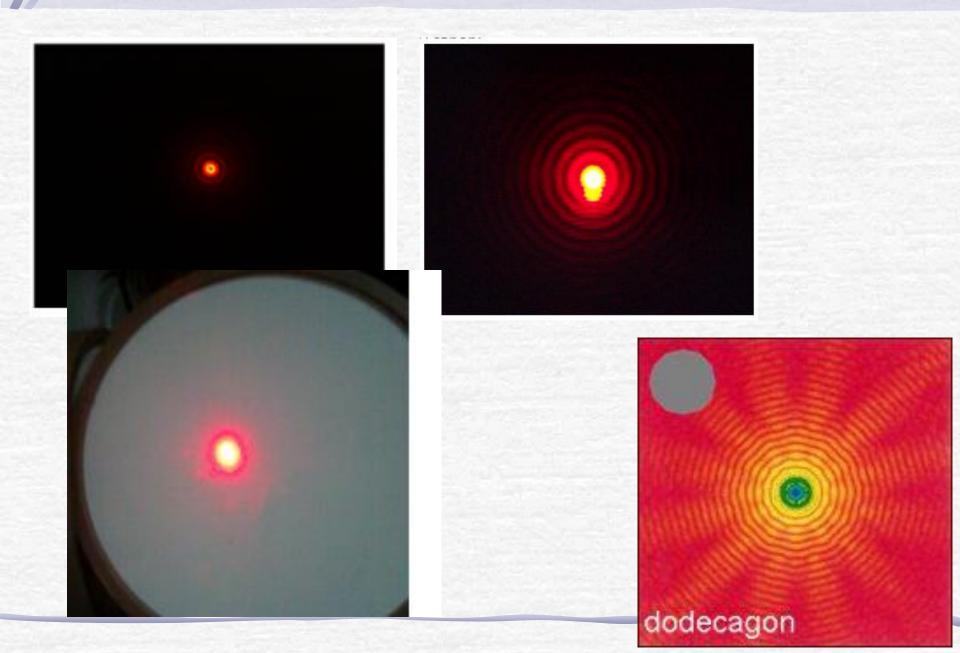
Fio de cabelo

No caso do fio de cabelo, que é um obstáculo e não uma fenda, vemos um padrão similar ao da fenda.

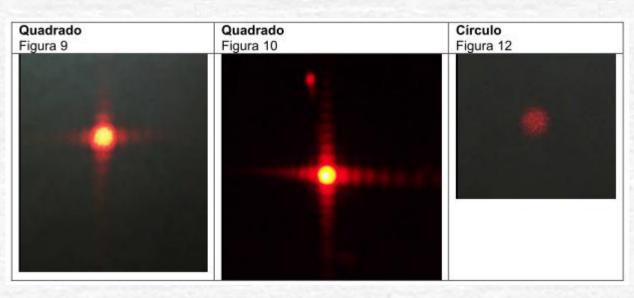
Na verdade devíamos ter uma mancha sem luz no centro, mas o tamanho do feixe e a dificuldade de fotografar nos impede de vê-la.

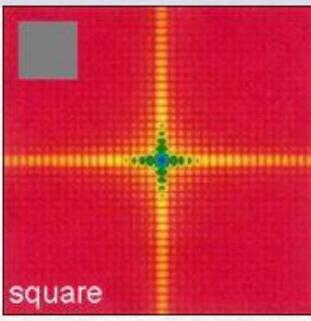


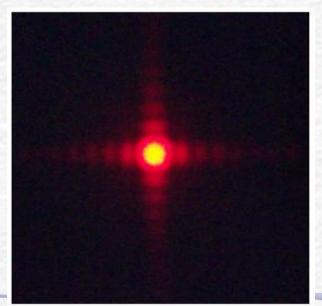
Círculos



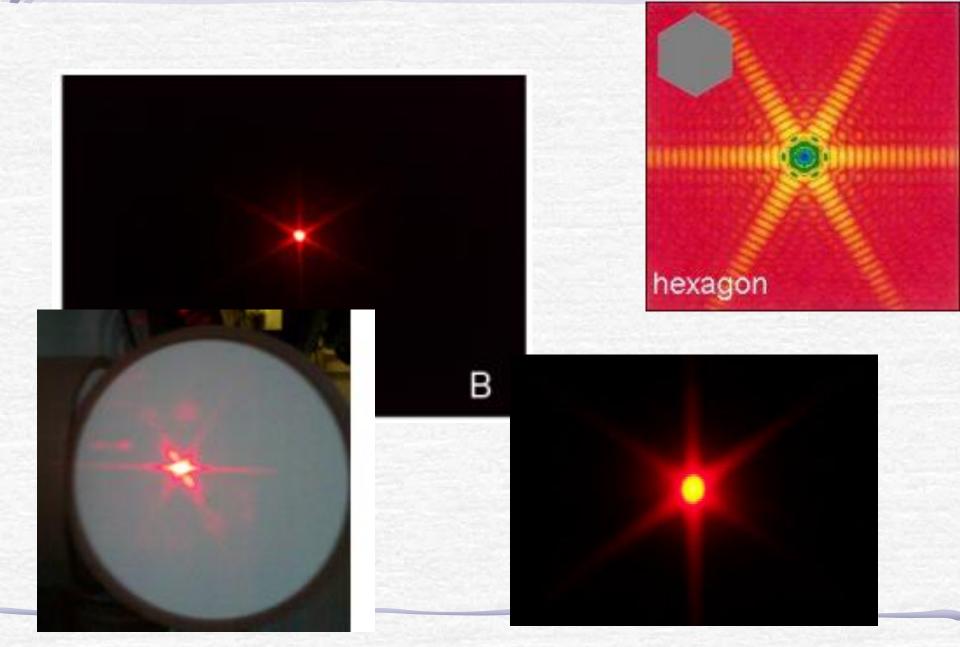
Quadrados



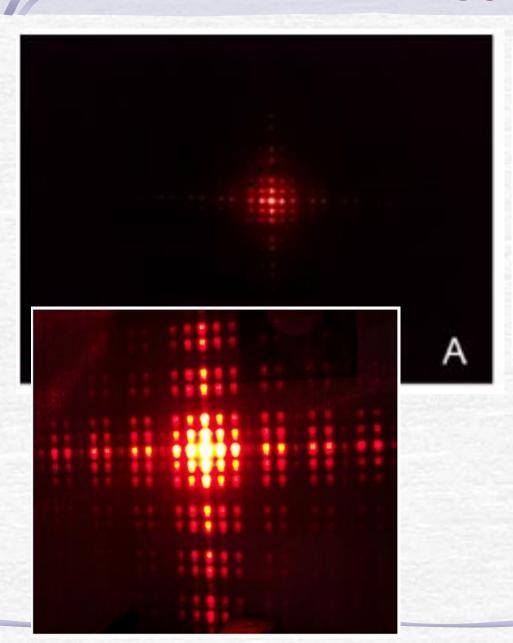


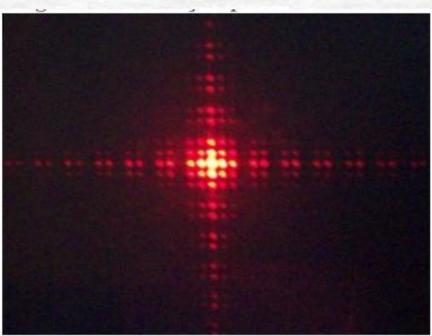


Hexágonos

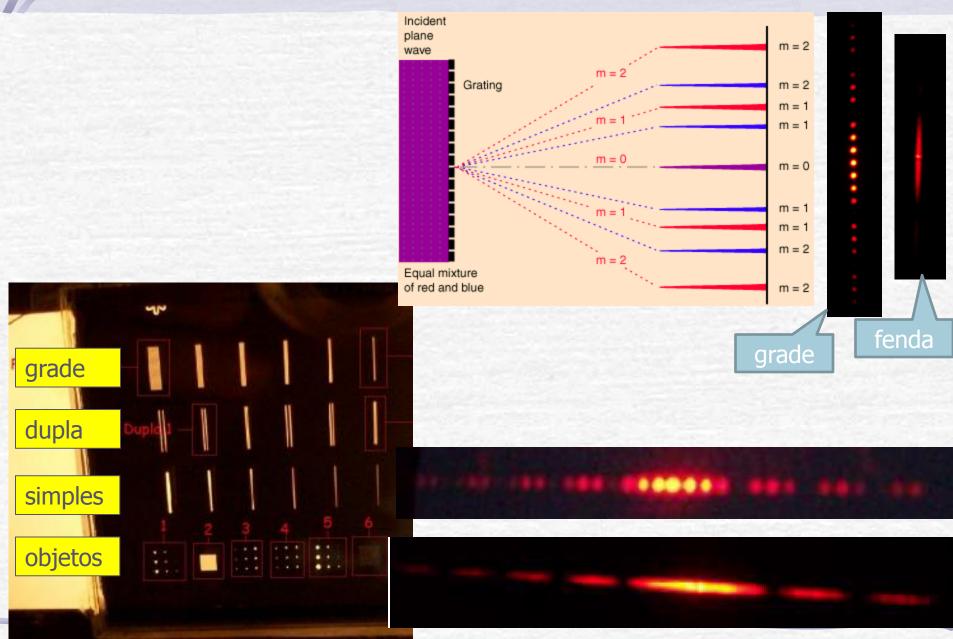


Rede



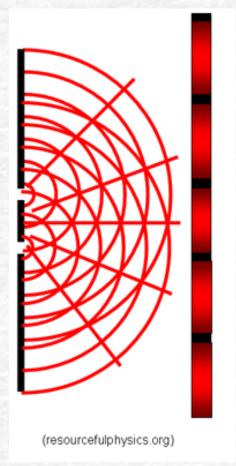


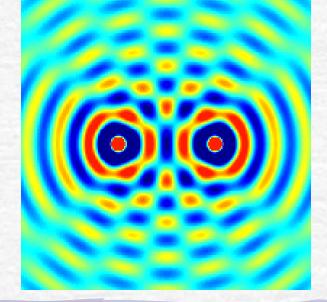
Confusão entre Fenda e Grade



AULA DE HOJE

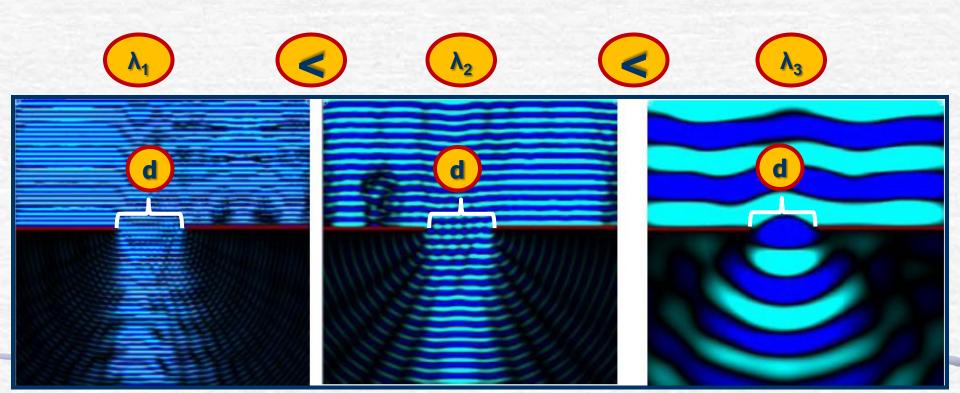
Difração e Interferência





Difração

- O quanto as ondas se espalham após o obstáculo ou fenda, depende da relação entre o comprimento de onda incidente (λ) e a dimensão da abertura (d):
 - http://sampa.if.usp.br/~suaide/applets/falstad/mirror1/ripple/



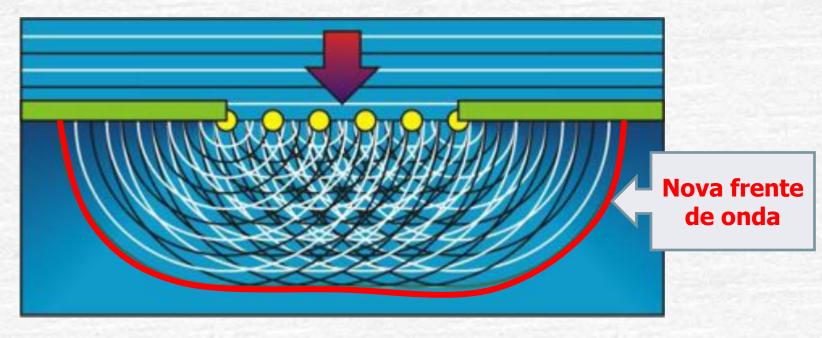
Difração: tratamento

Esse comportamento, apesar de ocorrer sempre, pode não ser notado. O domínio da Óptica Geométrica ou os fenômenos ópticos que podem ser explicados por essa teoria são aqueles que ocorrem em condições tais que os efeitos da difração são desprezíveis.

O tratamento completo da difração deve ser realizado através da teoria da eletrodinâmica quântica, entretanto, para as experiências que estamos propondo, a teoria eletromagnética clássica, que possibilita um tratamento extremamente mais simples, é mais que suficiente.

Difração: Princípio de Huygens

Princípio de Huygens. Esse princípio diz que cada ponto de uma frente de onda pode ser considerado como uma fonte secundária de ondas esféricas.



Esse princípio **independe do comprimento** de onda e prevê o mesmo comportamento para ondas de diferentes comprimentos de onda ao encontrarem o mesmo obstáculo.

Isso não é verdadeiro.

Difração: Princípio de Huygens-Fresnel

Fresnel, resolveu o problema adicionando a esse princípio, o conceito de interferência

Princípio de Huygens-Fresnel:

- Qualquer ponto de uma frente de onda que não seja obstruído, em qualquer instante se comporta como uma fonte de ondas esféricas secundárias, da mesma frequência da onda primária.
- A amplitude do campo elétrico em qualquer ponto após a passagem pelo obstáculo, é a superposição das amplitudes das ondas esféricas secundárias, <u>levando em conta suas</u> fases <u>relativas</u>.

Ou seja, considerase a interferência!

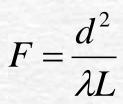
Difração de Fraunhofer e de Fresnel

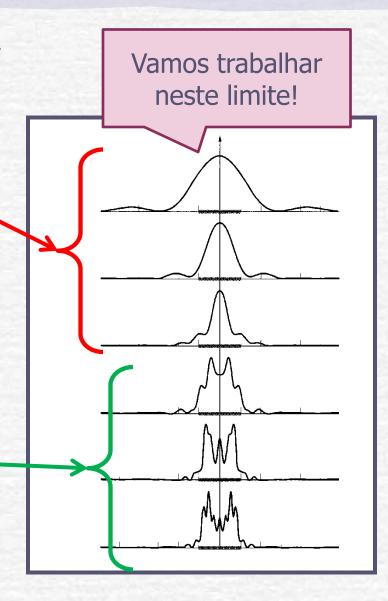
Se o plano de observação está a uma distância grande do obstáculo que contém a abertura, o princípio de **Huygens-Fresnel** funciona bem. Essa é a difração de Fraunhofer ou difração de campo distante.

Se o plano de observação é movido para uma distância um pouco maior que a dimensão da abertura, a imagem projetada ainda será reconhecível, mas terá estruturas bem visíveis, à medida que as franjas de difração ficam mais proeminentes. Esse fenômeno é conhecido como difração de Fresnel ou difração de campo próximo

Número de Fresnel

- F << 1 (Fraunhofer)
- F >> 1 (Fresnel)



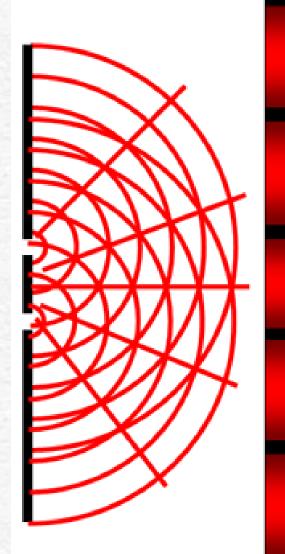


Interferência

 Seja duas fendas ideais, separadas de uma distância a.

 Como cada fenda funciona como uma fonte puntiforme radial, o campo elétrico gerado por uma delas vale:

$$\vec{E} = \frac{\vec{E}_0}{R} \cos(\vec{k} \cdot \vec{r} - \omega t + \delta)$$



Duas fendas ideais

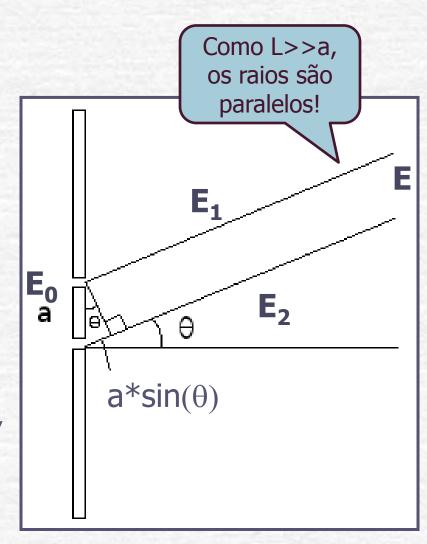
 Assim o campo total em um ponto distante qualquer vale:

$$\vec{E} = \vec{E}_1 + \vec{E}_2$$

$$= \frac{\vec{E}_0}{R} \begin{bmatrix} \cos(kr - \omega t) \\ + \cos(kr - \omega t + \delta) \end{bmatrix}$$

• Sendo δ a diferença de fase entre as duas ondas, que vale

$$\delta = ka\sin\theta$$



Duas Fendas: Interferência

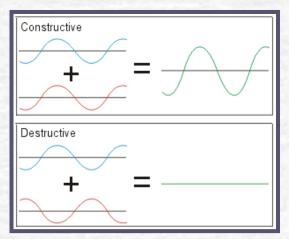
 O campo elétrico será nulo, i.e., há interferência destrutiva, quando:

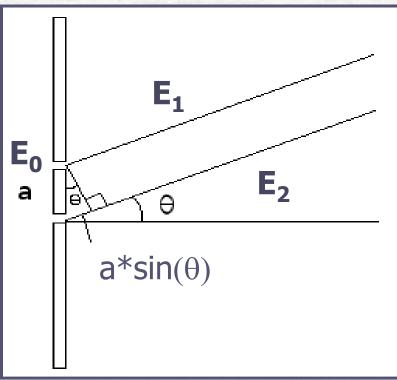
$$\delta = ka \sin \theta = \pi, 3\pi, 5\pi, \dots$$
$$ka \sin \theta = (2m+1)\pi, m = 0, 1, 2, \dots$$

Ou seja, quando:

$$\frac{2\pi}{\lambda}a\sin\theta = (2m+1)\pi$$

$$a\sin\theta = \left(m + \frac{1}{2}\right)\lambda, m = 0,1,2,...$$





Duas Fendas: Intensidade

Irradiância (I) de uma fonte de ondas eletromagnéticas: é a energia média emitida por unidade de área, por unidade de tempo. É proporcional ao quadrado do campo elétrico da onda eletromagnética.

$$\vec{E}_1 + \vec{E}_2 = \frac{\vec{E}_0}{R} \left[\cos(kr - \omega t) + \cos(kr - \omega t + \delta) \right]$$

$$= \frac{\vec{E}_0}{R} \left[2\cos\left(\frac{(kr - \omega t) + (kr - \omega t + \delta)}{2}\right) \cos\left(\frac{(kr - \omega t) - (kr - \omega t + \delta)}{2}\right) \right]$$

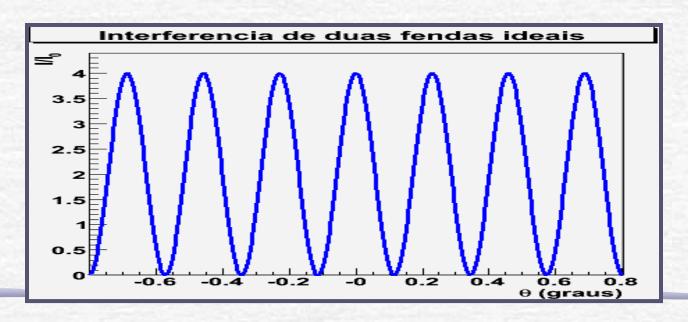
$$= \frac{\vec{E}_0}{R} \left[2\cos\left(kr - \omega t + \frac{\delta}{2}\right) \cos\left(\frac{-\delta}{2}\right) \right]$$

Duas Fendas: Intensidade

Portanto o campo e a intensidade são

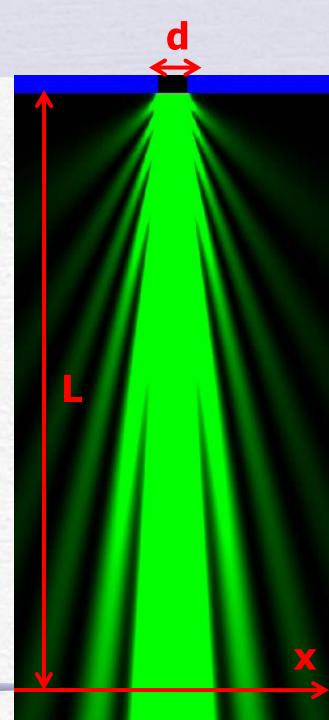
$$\vec{E} = \left(\frac{\vec{E}_0}{R} 2\cos(\delta/2)\right) \cos(kr - \omega t + \delta/2)$$

$$I = 4I_0 \cos^2 \alpha$$
, $\alpha = \frac{\delta}{2} = \frac{\pi}{\lambda} a \sin \theta$, $I_0 = \frac{E_0^2}{R^2}$



Difração

- Seja uma fenda de largura d.
- Se a largura d for comparável com o comprimento de onda λ, ocorre difração.
- Se colocarmos um anteparo a uma distância L, muito maior que d, qual é a intensidade luminosa ao longo do eixo x?

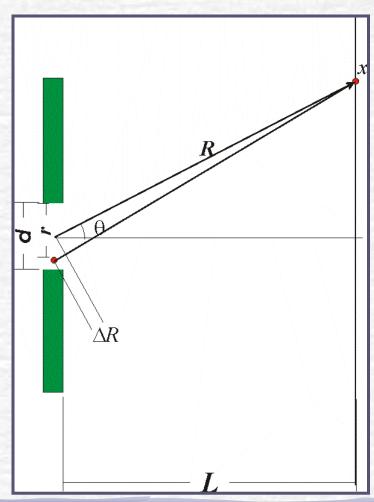


Fenda Simples

Neste caso consideramos **cada pedaço** da fenda como uma fonte pontual.

- Seja um pedaço qualquer da fenda, distante de r de uma das extremidades
- Seja uma onda de freqüência f e comprimento de onda λ.
- Em um instante *t* qualquer a intensidade da onda no ponto *x* vale:

$$\vec{E}(r) = \frac{\vec{E}_0}{R} \cos(kR - \omega t + \delta)$$
$$\delta = k\Delta R = kr \sin \theta$$



Fenda Simples: Difração

 Para saber o campo total, é preciso somar todos os pedaços da fenda:

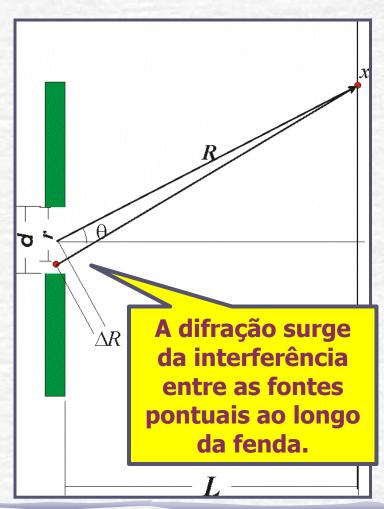
$$\vec{E}(x) = \int_{-d/2}^{d/2} \vec{E}(r)dr$$

$$\propto \left[\frac{\sin(kR - \omega t + kr\sin\theta)}{k\sin\theta} \right]_{-d/2}^{d/2}$$

$$\propto \frac{\sin(\beta)}{\beta}, \text{ onde } : \beta = k\frac{d}{2}\sin\theta$$

Assim a intensidade fica:

$$I = I_0 \left(\frac{\sin \beta}{\beta}\right)^2, \ \beta = \pi \frac{d}{\lambda} \sin \theta$$



Fenda Simples: Intensidade

A intensidade para o caso da fenda simples também

apresenta mínimos:

$$I = I_0 \left(\frac{\sin \beta}{\beta} \right)^2, \ \beta = \pi \frac{d}{\lambda} \sin \theta$$

Que ocorrem quando:

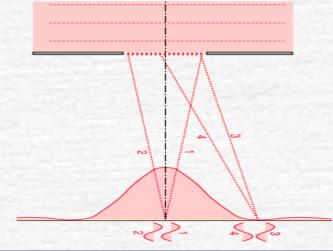
$$\sin \beta = 0 \Rightarrow \beta = \pm m\pi, m = 0,1,2,3,...$$

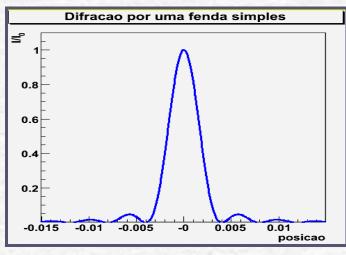
Ou seja:

$$d\sin\theta = \pm m\lambda, m = 1,2,3,...$$

Para *m=0* temos um máximo pois: sin *x*

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$



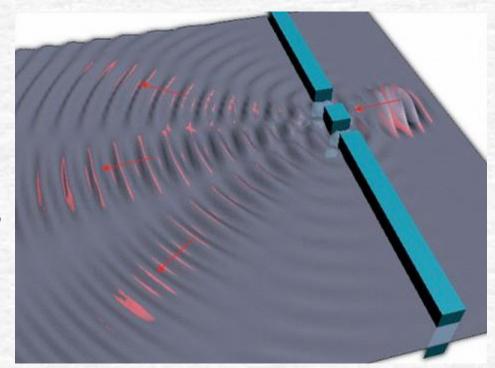


Fenda Dupla REAL

 Vamos voltar ao caso da fenda dupla e considerá-la real, isto é, vamos considerar que cada abertura tem uma dimensão não pontual.

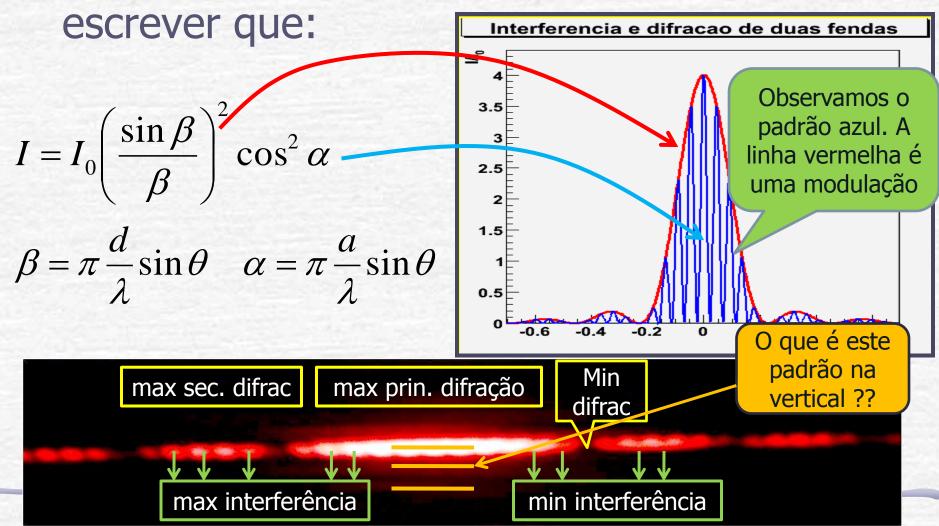
- Seja uma fenda dupla de separação, centro a centro,
 a, e largura de fenda b.
- Além da difração em cada fenda separadamente, temos a interferência entre as duas fendas.

$$I = I_{\text{difrac}} * I_{\text{interf}}$$



Fenda Dupla: Difração e Interferência

Assim, sendo a distância entre as fendas e
 d a largura de cada fenda, podemos



Difração em duas dimensões

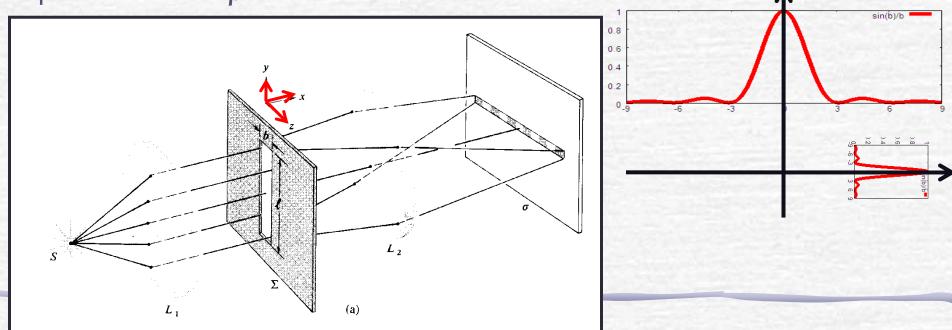
Uma fenda real, tem um comprimento \mathbf{D} e uma largura \mathbf{d} , e <u>a difração</u> <u>acontece nas duas direções</u>! Contudo, ao longo do comprimento, a intensidade cai muito rapidamente pois $\mathbf{D} >> \lambda$ enquanto que $\mathbf{d} \sim \lambda$.

Como: Então:

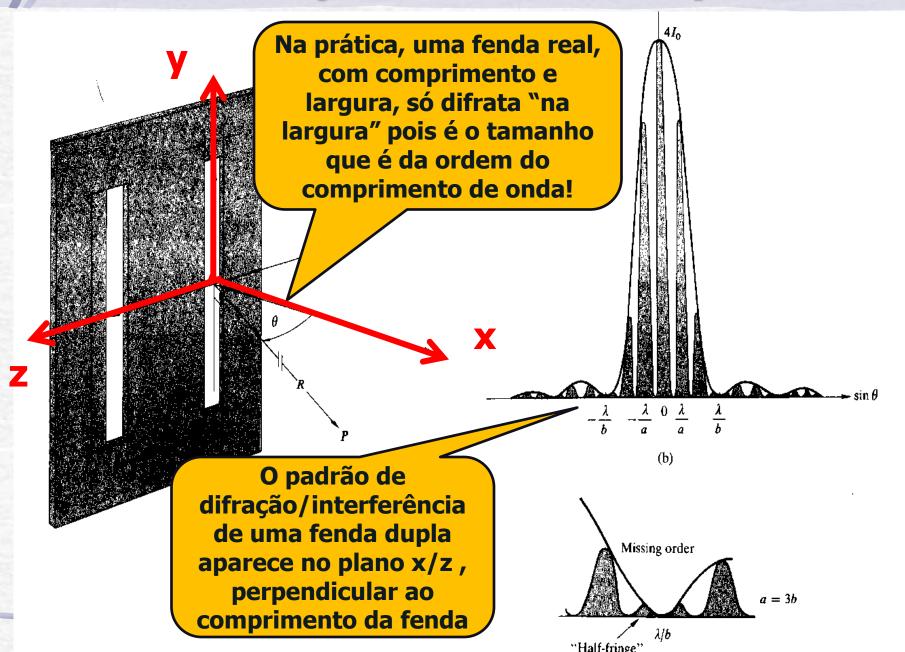
$$\beta = \frac{\pi D}{\lambda} \operatorname{sen}\theta \qquad \beta >> 1 \to \frac{\operatorname{sen}\beta}{\beta} << 1$$

Na direção do comprimento, a intensidade é muito pequena

para valores de $\beta > 0$.



Difração de fenda dupla



Características do objeto

Como vimos, a razão entre as dimensões do objeto e comprimento de onda determinam o padrão de difração.

- A partir da separação entre os mínimos da figura de difração pode-se calcular a largura da fenda.
- A partir da separação entre os máximos (ou mínimos) do padrão de interferência pode-se calcular a separação entre elas.

Nos dois casos, é preciso conhecer a **distância entre as fendas e o anteparo** e que as condições para a ocorrência da **difração de Fraunhofer estejam satisfeitas**.

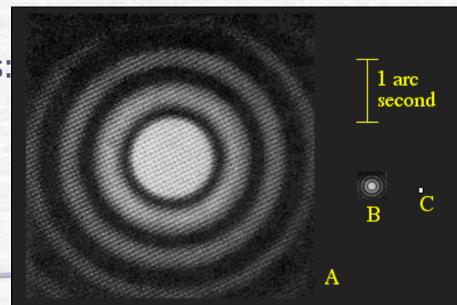
Difração: orifício circular

 Da mesma forma que para a fenda simples, podemos observar figuras de difração para um orifício circular de diâmetro a. Neste caso, os mínimos de intensidade correspondem à:

$$\frac{sen\theta}{\lambda/a}$$
 = 1,22; 2,23; 3,24; ...

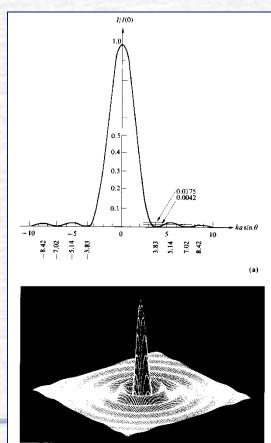
Imagens de uma estrela com telescópios de aberturas diferentes:

A=espelho de 10cm de diâmetro B= espelho de 1m de diâmetro C= espelho de 10m de diâmetro

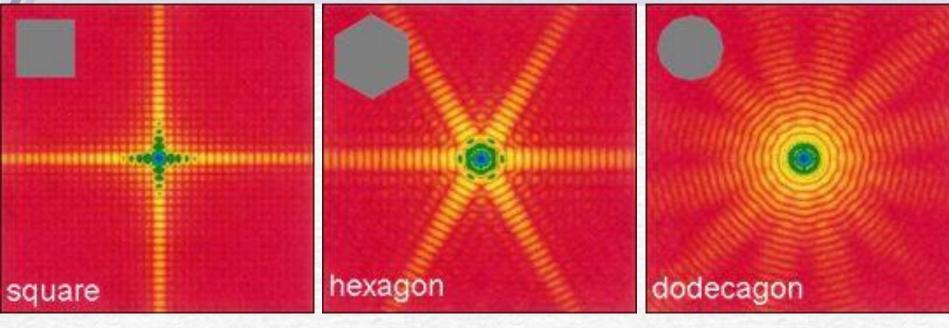


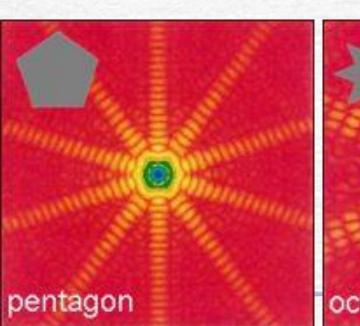
Difração: orifício circular

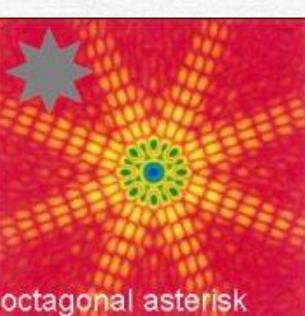
- A imagem de uma fonte pontual formada por uma lente convergente, totalmente livre de aberrações, nunca é um ponto, ela é o máximo principal correspondente a algum tipo de difração.
- Os máximos, neste caso, são chamados de discos de Airy, porque foi Sir George Biddell Airy quem primeiro derivou a fórmula que descreve a distribuição de intensidade para a abertura circular.
- E aí está incluído o seu olho! Portanto o que se enxerga é sempre uma figura de difração.

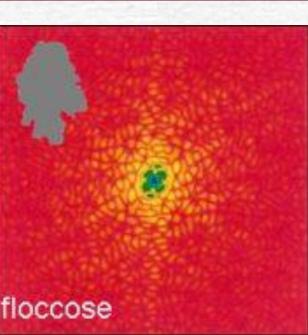


Difração orifícios de formas diversas





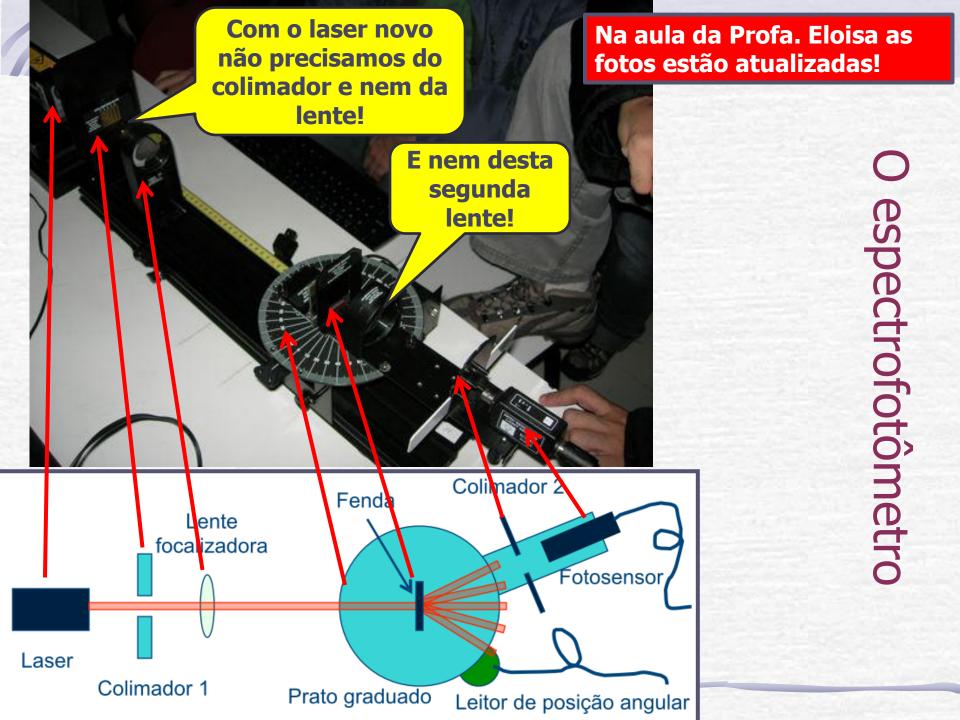


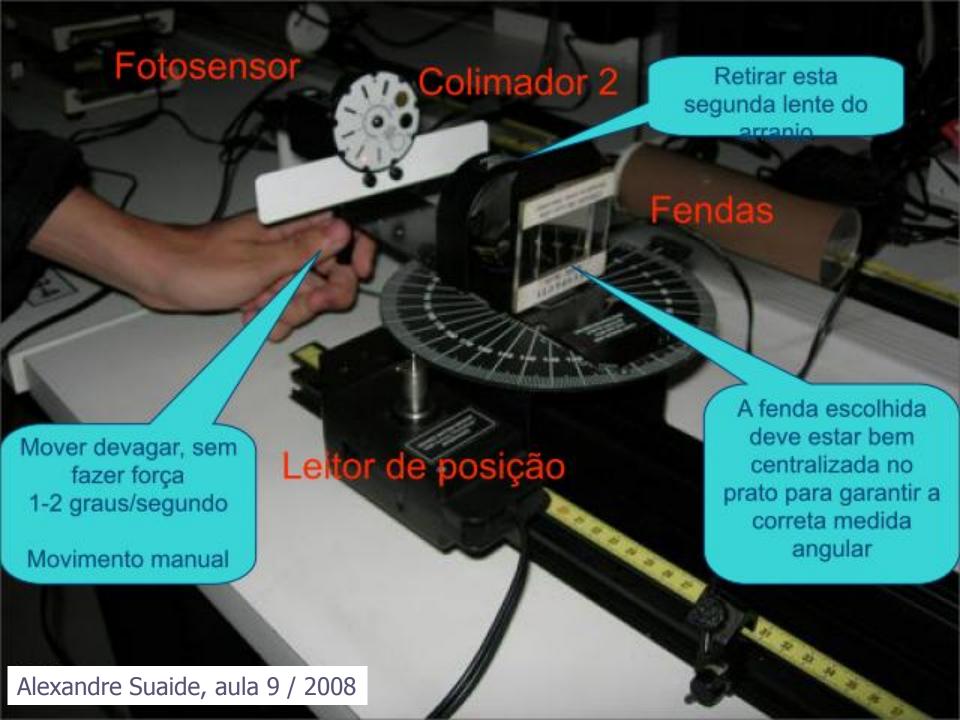


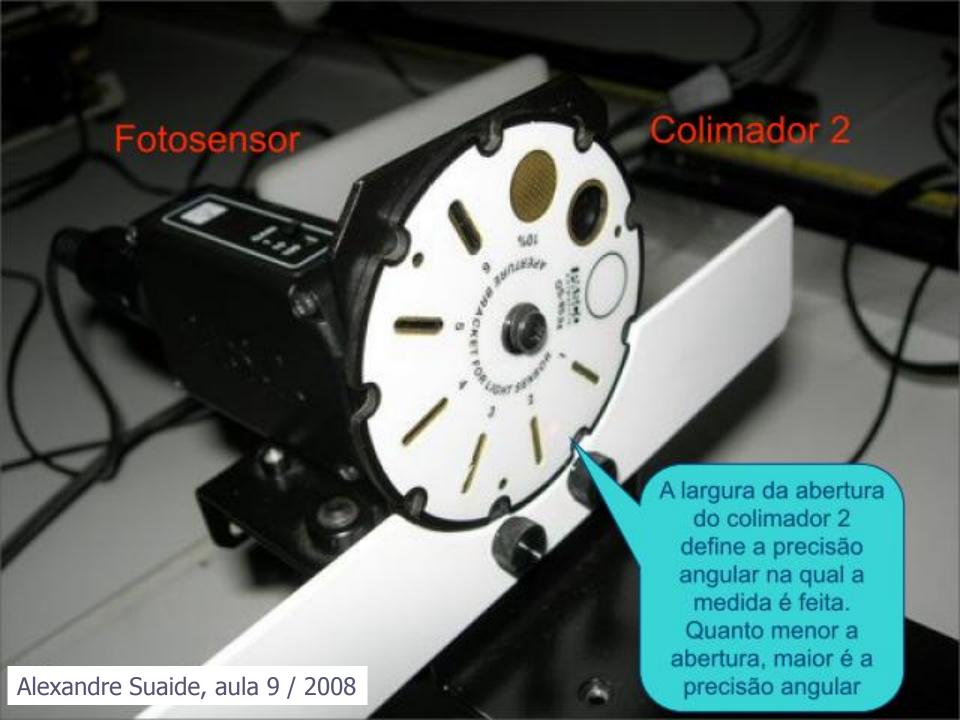
Para Esta Semana

Estudar a difração e interferência da Fenda simples:

- Medir as intensidades da figura de difração da fenda simples com o espectrofotômetro.
 - Com ganho=1 dá pra medir todos os picos, mas os secundários ficam muito pequenos
 - Com ganho=10 satura o máximo central mas os outros ficam mais visíveis.
 - Qual é melhor usar? Dá para juntar as duas medidas ??
- Superpor a curva teórica à experimental
- Da distância entre os mínimos nesse espectro obtenha a largura da fenda e compare com o valor nominal.
- Obter a razão entre as amplitudes dos campos elétricos de cada máximo secundário e a do máximo principal
- Comparar as razões obtidas com os coeficientes da transformada de Fourier de uma onda quadrada. (vamos ver o porque disso na próxima aula)



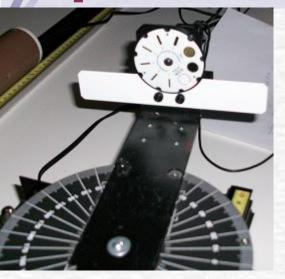




Espectrofotômetro: funcionamento

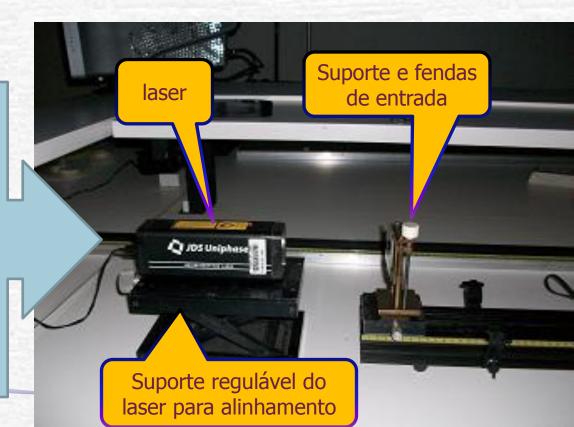
- Esse instrumento funciona com o DataStudio:
 - o Ligue o light sensor no canal A
 - o Ligue o rotary motion sensor (é só clicar)
- Clique no rotary motion e abre-se a janela do set up:
 - o ajuste a resolução do rotary motion para 1440 divisão/grau
 - o ajuste a frequência de amostragem para 50Hz
- Coloque o ganho do sensor ótico igual a 1. (No próprio sensor).
- Com a função Calculate definir o ângulo correto:
 - Quando o disco calibrado dá uma volta, o pino gira 60 voltas. Como o instrumento dá o ângulo do pino, o ângulo correto é a leitura do instrumento(ângulo do pino) dividido por 60.
 - No Calculate definir ângulo=x/60.
- Comece as medidas movimentando o light sensor de forma contínua e pausada.

Espectrofotômetro: funcionamento



Use a fenda de saída número 1 (a mais estreita), pois queremos a melhor resolução angular possível..

- •Use a segunda **fenda simples** mais larga do slide de fendas de entrada.
- •Usar o slide de fendas de alumínio, na entrada (ele é prateado).
- •O alinhamento do laser é muito importante, se não estiver bem alinhado o espectro não fica simétrico.



Dados

