Prof. Henrique Barbosa hbarbosa@if.usp.br

Ramal: 6647 Ed. Basílio Jafet, sala 100

Física Experimental IV - FAP214

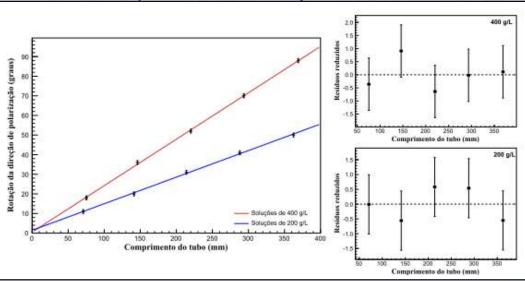
www.dfn.if.usp.br/curso/LabFlex www.fap.if.usp.br/~hbarbosa

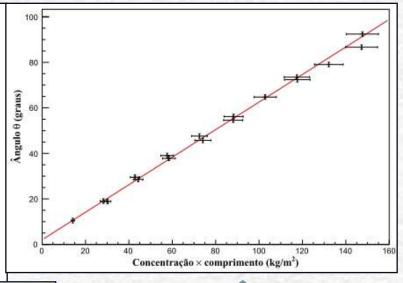
Aula 2 e 3, Experiência 3 Birrefringência e Atividade Óptica

Polarização da luz

- Objetivos Estudar o fenômeno de polarização da luz
 - Aula 1 Métodos de polarização
 - Lei de Malus
 - Lei de Brewster
 - Aulas 2+3 Fenômenos ópticos de polarização da luz
 - Estudo do fenômeno de birrefringência
 - Alteração do estado de polarização da luz
 - Atividade óptica de elementos
 - Estudo da birrefringência em soluções de açucares

TAREFAS SEMANA PASSADA




Para Entregar: Parte 1

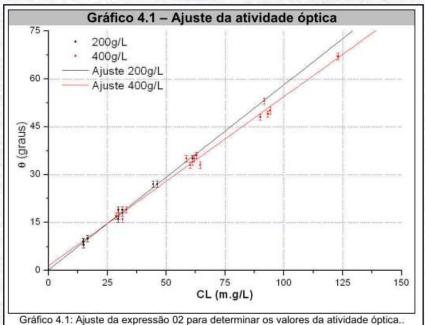
- Mostrar que o ângulo θ varia linearmente com o comprimento L.
- Mostrar que o ângulo θ varia linearmente com a concentração da solução de açúcar (obter a constante γ).
- Obter o valor da constante α para o açúcar.
 - Vocês devem fazer um gráfico de θ contra o que??
 Lembrem-se, é preciso um número de pontos suficientes para um bom ajustes linear.
- Vocês têm à disposição vários tubos contendo soluções com diferentes concentrações de açúcar
 - Combine estes tubos em seqüência para simular diferentes comprimentos, por exemplo

Uma boa análise

Primeiro, verificaram que era linear com L

No ajuste linear realizado com soluções de 400 g/L, foi obtido um coeficiente linear $0.5 (11)^{\circ}$, claramente compatível com zero, e obtivemos $\chi^2 = 0.46$. Para as soluções de 200 g/L, o coeficiente linear foi de $1.4 (10)^{\circ}$, também compatível com zero; obtivemos também $\chi^2 = 0.41$. Ambos os valores de χ^2 estão dentro do esperado, e, aliados ao gráfico de resíduos, mostram que de fato a relação linear entre θ e L é verificada.

Para estudar a dependência com a concentração (suposta linear, com $\gamma=1$), seria insuficiente contar com apenas dois valores de concentração. Inicialmente, verificamos que a razão entre os coeficientes angulares — $0.136 \, (4)^{\circ}$ /mm para $200 \, \text{g/L} = 0.237 \, (4)^{\circ}$ /mm para $400 \, \text{g/L}$ — era próxima de 0.5, embora estivesse no limiar de compatibilidade, a pouco mais de 3 incertezas: $0.572 \, (21)$.


Por isso, foi feito um gráfico de $\theta \times CL$; se realmente tivermos $\gamma = 1$, espera-se obter uma reta

cujo coeficiente angular é α . O gráfico obtido encontra-se na

Deviam ter usado cores diferentes para as duas concentrações!

Visualmente, o ajuste parece representar bem os dados; obtivemos para esse ajuste $\chi^2 = 0.38$, com um coeficiente linear $2.0 \, (9)^\circ$, compatível com zero, o que serve para corroborar nossa hipótese de que a relação entre θ e C é linear, ou seja, $\gamma = 1$. Obtivemos para o coeficiente angular o valor $0.605 \, (15)^\circ \, \text{m}^2/\text{kg}$, que pode ser identificado como nossa constante α (dependente apenas do material) para o açúcar.

Outras análises

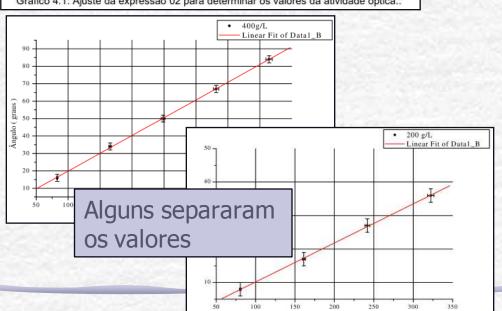


TABELA 4.1: Valores do ajuste para 200g/L			
	Valor	Incerteza	
a (graus.L/(g.m))	0,579	0,021	
B (graus)	0,22	0,69	
Z de B com zero	0,32	30	
X ² red	0,989		

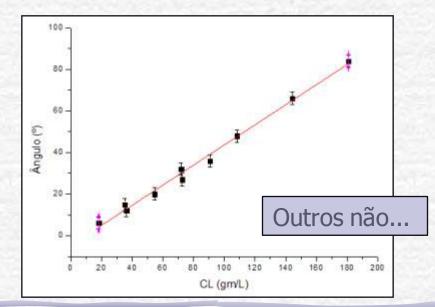

Tabela 4.1: Valores ajustados no gráfico acima para concentração de 200g/L.

TABELA 4.2: Valores do ajuste para 400g/L				
7-	Valor	Incerteza		
α (graus.L/(g.m))	0,5290	0,0095		
B (graus)	1,48	0,67		
Z de B com zero	2,20	2002000		
X ² red	0,988	36		
Z entre a200 e a400	2,17	02		

Tabela 4.2: Valores ajustados no gráfico acima para concentração de 400g/L.

L(mm)

Problema com a teoria

Um dos grupos ajustou a curva permitindo que γ variasse... O problema é que foi feito para cada concentração!

Se γ = cte, então a equação se resume a:

$$\theta = cL$$

Onde:

$$c = \alpha C^{\gamma} = cte$$

Não dá pra ajustar α e γ apenas com os dados de C=200. Para encontrar γ , C precisa variar!!

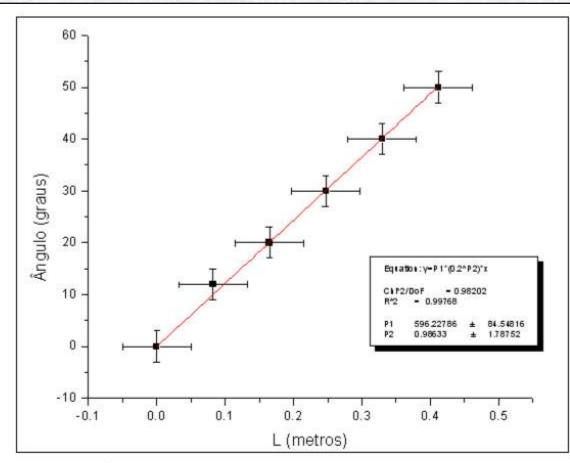


Figura 2.0 – Ângulo (graus) entre os polaróides em função da distância (metros) percorrida pelo feixe dentro da solução. A curva vermelha representa o ajuste dos dados à equação 1. Solução de 200 g/L.

Os parâmetros ajustados para a solução de concentração 200 g/L de açúcar foram os seguintes:

$$\alpha = 596,28 \pm 84,55$$
 e $\gamma = 0,986 \pm 1,787$

Resultados

Grupo	C º dm²/kg	Sentido
H1		
H2	59,7±2,0	dextro
H3	57,0±1,4 e 58,5±2,7	?
H4	?	anti-horário/Levo
H5	56,0±1,6 e 56,8±2,5	Direita
H6		
H7	48,4 ± 1.5	?
H8	0.85 ± 0.03	?
H9	53,16 ± 0,68	?
H10	60,5 ± 1,5	Esquerda
H11	56,46±0,57 e 54,25±0,71	?

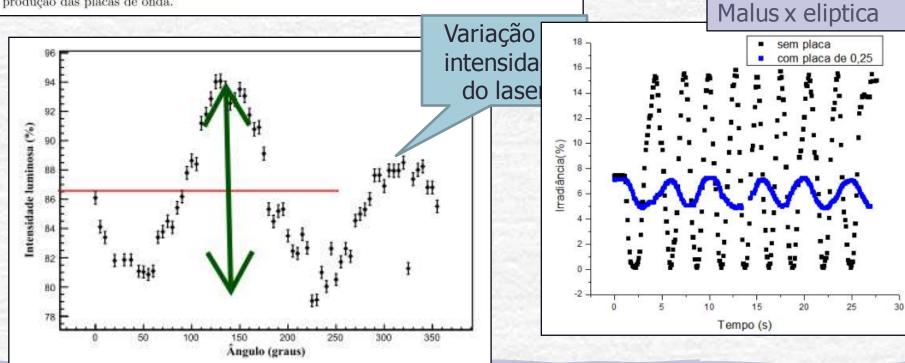
		H05	H05 H05	V10	V10	A05
		56,8(2,5)	56,0(1,6)	57,9(2,4)	55,12(25)	50,6(2,1)
H05	56,8(2,5)		0,27	0,32	0,67	1,90
H05	56,0(1,6)	0,27	100	0,66	0,54	2,05
V10	57,9(2,4)	0,32	0,66		1,15	2,29
V10	55,12(25)	0,67	0,54	1,15		2,14
A05	50,6(2,1)	1,90	2,05	2,29	2,14	

Tabela 1 - Teste de compatibilidade das constantes de proporcionalidade

Para Entregar: Parte 1

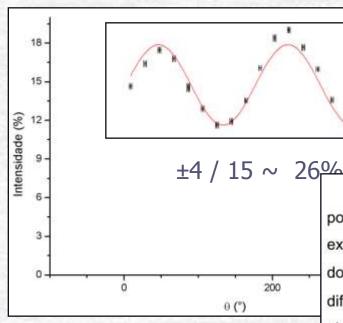
Placa de 1/4 onda

- Medir a intensidade em função da posição do polarizador 2 no data studio
 - Fazer rápido para não ser influenciado pela variação de polarização e intensidade inicial do laser.



Uma boa análise

Um dos cuidados experimentais que tomamos foi utilizar 5 placas de 1/4 de onda, que têm o mesmo efeito de apenas uma, e 6 com o efeito da de 1/2 onda, para tentar diminuir o erro gerado por cada uma delas, já que assim fazemos uma espécie de "média".


Para a placa de 1/4 de onda, esperávamos uma intensidade constante para qualquer ângulo no

polarizador, já que a onda deveria estar circularmente polarizada. Entretanto, as placas utilizadas não possuíam qualidade suficiente para isso, deixando a onda resultante polarizada elipticamente, ou seja, havia uma variação significativa na intensidade em função do ângulo, com o formato de um cosseno ao quadrado, como pode ser visto no gráfico abaixo. A variação máxima da intensidade em torno do valor médio foi de 9,5%, o que é aceitável frente a imprecisão de cerca de 20% na produção das placas de onda.

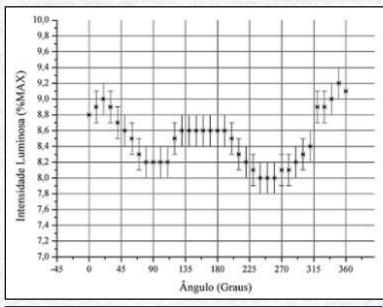
De outro grupo:

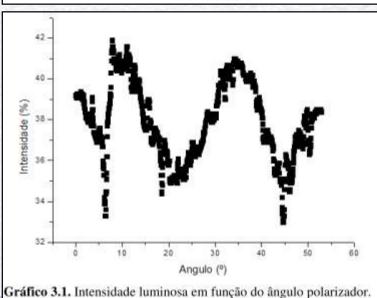
Outra análise boa

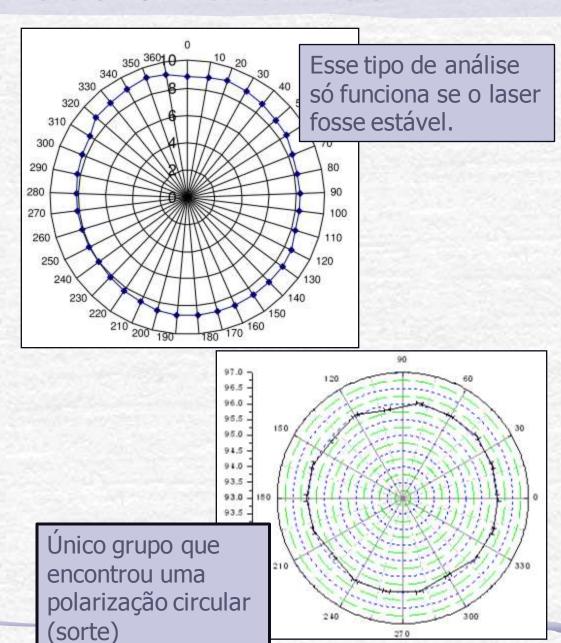
Percebe-se, claramente, que o gráfico não é uma constante. Para entender porque isto ocorreu é preciso supor que a espessura da placa não correspondia exatamente ao que faria com que a diferença de fase entre as componentes na direção do eixo ótico e na direção perpendicular a ele fosse $\pi/2$. Se se supor, então, que a diferença de fase é bem próxima de $\pi/2$, o campo elétrico resultante após passar a placa será algo da forma:

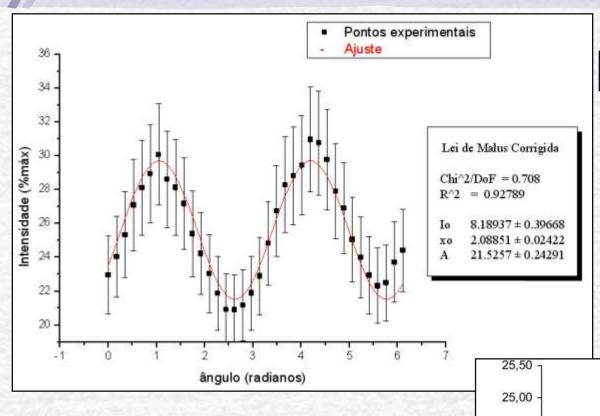
$$\vec{E} = E_0 \cos(kx - \omega t)\hat{e} + E_0 \cos(kx - \omega t + \pi/2 + \delta)\hat{o} = E_0 \cos(kx - \omega t)\hat{e} + E_0 (\sin(kx - \omega t) + \cos(kx - \omega t)k\delta)\hat{o}$$

Portanto, haverá um termo a mais na expressão para o campo elétrico, o que faz com que este não seja mais circularmente polarizado. Se δ for pequeno, a polarização será, basicamente, elíptica. Para tal polarização a intensidade luminosa irá variar com o ângulo da seguinte forma:

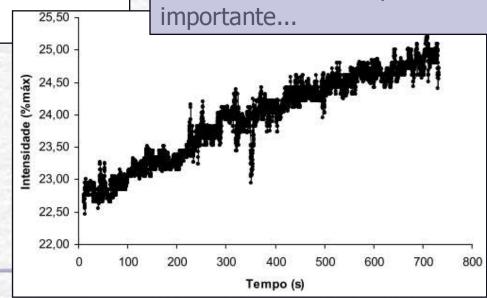

$$I(\theta) = E_0' \left(\cos(\theta - \theta_0) \right)^2 + E_0 \left(sen(\theta - \theta_0) \right)^2 =$$


$$= E_0 + (E_0' - E_0) \left(\cos(\theta - \theta_0) \right)^2$$


Em que θo é o ângulo do semi-eixo maior da elipse.


Com base nisto, ajustou-se a curva ao gráfico. Segue o ajuste feito:

Mais análises diferentes

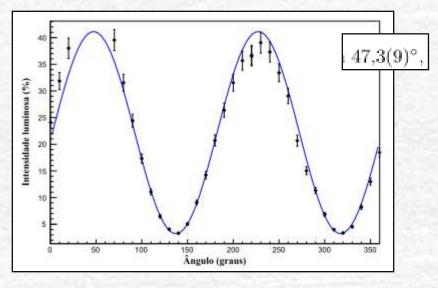


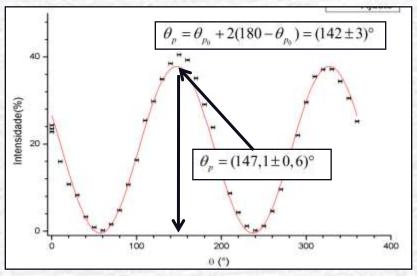
$$I = I_0 \cdot \cos^2 \theta$$
 (3.1) e $I = I_0 \cdot \cos^2 (\theta + \theta_0) + A$ (3.2)

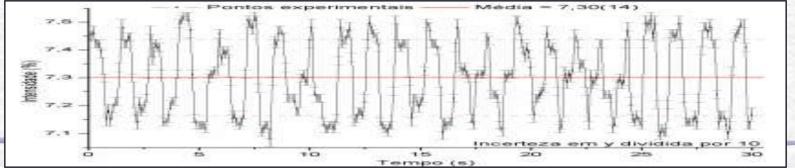
Io =
$$(8,189 \pm 0,397)$$
 % máx
 θ_0 = $(2,088 \pm 0,0242)$ radianos
A= $(21,526 \pm 0,243)$ % máx

A influência do laser podia ser importante...

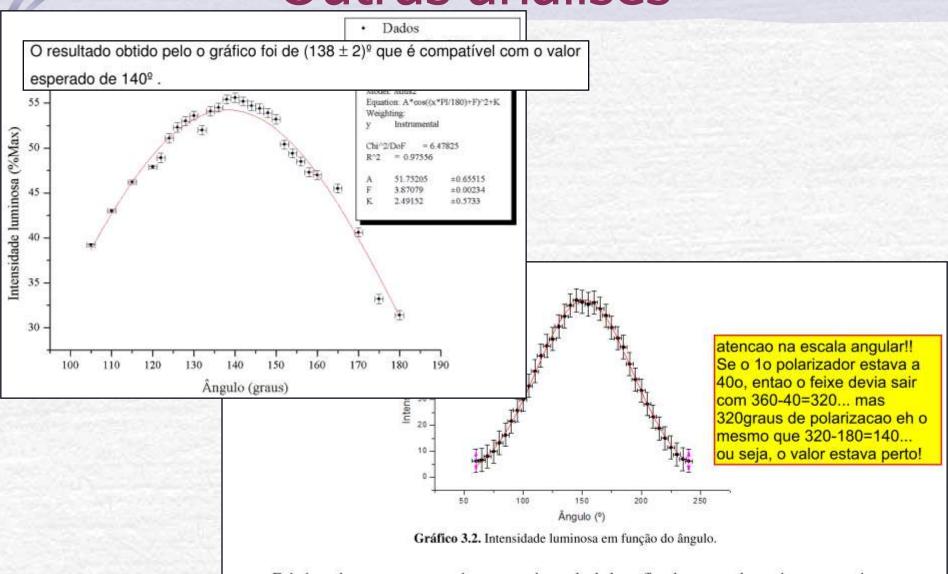
Para Entregar: Parte 2

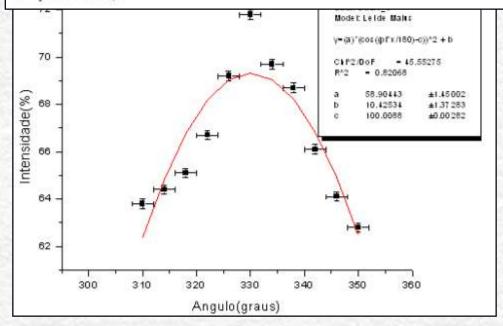

Placa de 1/2 onda


- Montar o mesmo arranjo da placa de ¼ de onda
- Posicionar o polarizador a um ângulo θ qualquer (próximo de 30-50°).
 - Porque 30-50°? Como isto afeta as incertezas experimentais?
- Verificar se a polarização girou de 2θ graus.
 - Medir a intensidade com o polarizador 2 em vários ângulos em torno de 2θ e mostrar que o máximo ocorre, de fato, em 2θ.


Boas análises

Para a placa de meia onda, deixamos o primeiro polarizador na posição de −45(1)° (posição invertida); dessa forma, era esperado que a polarização girasse 90(2)°, ou seja, indo para 45(3)°. Assim, ao analisar a intensidade medida em função do ângulo do segundo polarizador, esperávamos um máximo nesse ângulo, já que esse caso é descrito pela lei de Malus. Ajustando uma curva do tipo


$$I = I_0 \cos^2(\theta - \theta_0) + I_f$$


Outras análises

Foi ajustada uma curva gaussiana no conjunto de dados a fim de apenas determinar com maior precisão com o valor do ângulo para a intensidade máxima obtida, sendo este $\theta_{max} = (151,56 \pm 0,19)^{\circ}$. Percebemos que este esta muito distante do valor que teoricamente deveria ser, de 80° pois o polarizador 1 se encontra em 40° e uma placa deste tipo gira de 20 o feixe incidente.

Outras análises

Da figura 5, fica claro que o segundo pico encontra-se em 330(2) graus, que é compatível com o valor teórico 360-30=330 graus, que claramente é compatível com o experimental (teste Z de compatibilidade).

Fim do Curso

- Com isso chegamos ao final do curso
- Observações:
 - A síntese 2+3 pode ser reentregue até 29/6
 - A apresentação é dia 30/6 (desta vez a nota sai no mesmo dia)
 - Quem tiver um A e um B+ está dispensado do relatório
 - Temos vagas para monitoria de Lab3 no semestre que vem, os interessados devem me procurar