Física Experimental IV – FAP2 I 4

Notas de aula: www.fap.if.usp.br/~hbarbosa

LabFlex: www.dfn.if.usp.br/curso/LabFlex

Aula 2, Experiência I Circuitos CA e Caos

Prof. Henrique Barbosa

hbarbosa@if.usp.br

Ramal: 6647

Ed. Basílio Jafet, sala 100

Intro...

Podem me procurar! me encontrando, estou sempre a disposição.

Prof. Henrique Barbosa hbarbosa@if.usp.br

Ramal: 6647

Ed. Basílio Jafet, sala 100

http://www.fap.if.usp.br/~hbarbosa

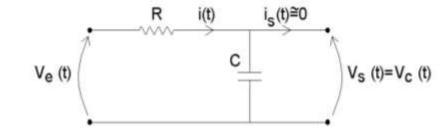
Vejam as notas de aula e os manuais de preparação das sínteses e relatórios.

Usem a lista de discussão para tirar as dúvidas, pois pode ajudar outros alunos.

TAREFAS SEMANA PASSADA

Filtros e Circuitos Especiais

O Ganho é:
$$\hat{G} = \frac{\hat{V}_S}{\hat{V}_e} = G_0 e^{j\phi_G}$$



Sendo:

$$\omega_C = \frac{1}{RC}$$

R e C podem ser medidos e há valores nominais

$$G_0 = \frac{V_S^0}{V_e^0} = \frac{1}{\sqrt{1 + \left(\frac{\omega}{\omega_C}\right)^2}}$$

$$\phi_G = \omega \Delta T_{S-} = \arctan \left(-\frac{\omega}{\omega_C} \right)$$

Tensões são medidas com osciloscópio

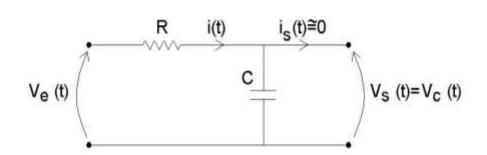
A frequência também

Intervalo de tempo entre duas tensões também é mensurável

Filtros e Circuitos Especiais

Então:

$$\hat{G} = \frac{\hat{V}_S}{\hat{V}_e} = \frac{1}{j\omega RC}$$



Ou ainda:

$$\hat{V}_{S} = \frac{1}{j\omega RC}\hat{V}_{e}$$

O Lembrando que:
$$\hat{V_e} = V_e e^{j\omega t}$$

• E que:
$$\int \hat{V}_e dt = \frac{1}{j\omega} V_e e^{j\omega t} = \frac{1}{j\omega} \hat{V}_e$$

O Temos que:

$$\hat{V}_{S} = \frac{1}{RC} \int \hat{V}_{e} dt$$

Capacitor

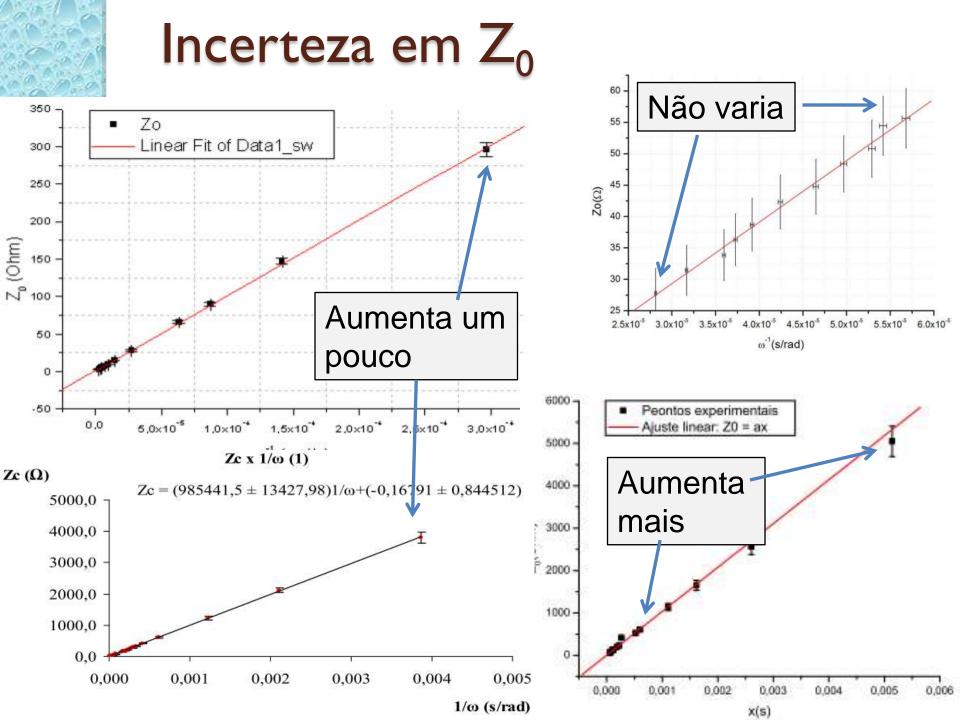
- Gráfico de \mathbf{Z}_c experimental em função de ω
 - ∘ lembre-se que Z=Tensão/corrente → Z = 1/ωC
 - Obter o valor da capacitância deste gráfico
- Gráfico de ϕ_c (fase do capacitor) em função de ω
 - Comparar com o esperado teoricamente para o capacitor

Filtro RC

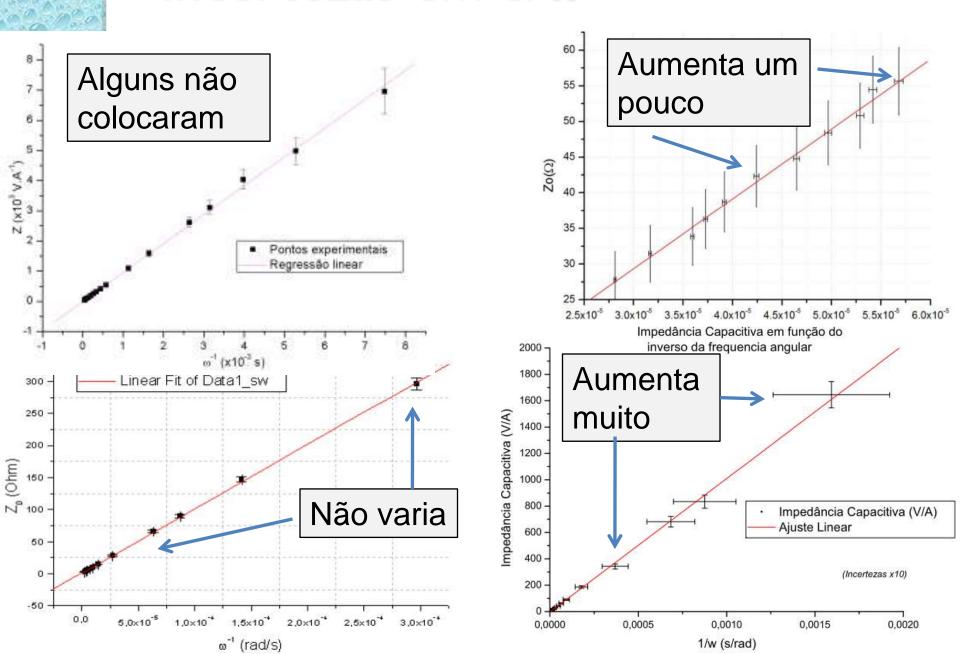
- Gráfico de G_0 em função de ω
 - Comparar com o esperado teoricamente
- Gráfico de ϕ_G (fase entre V_s e V_e) em função de ω
 - Comparar com o esperado teoricamente

Integrador

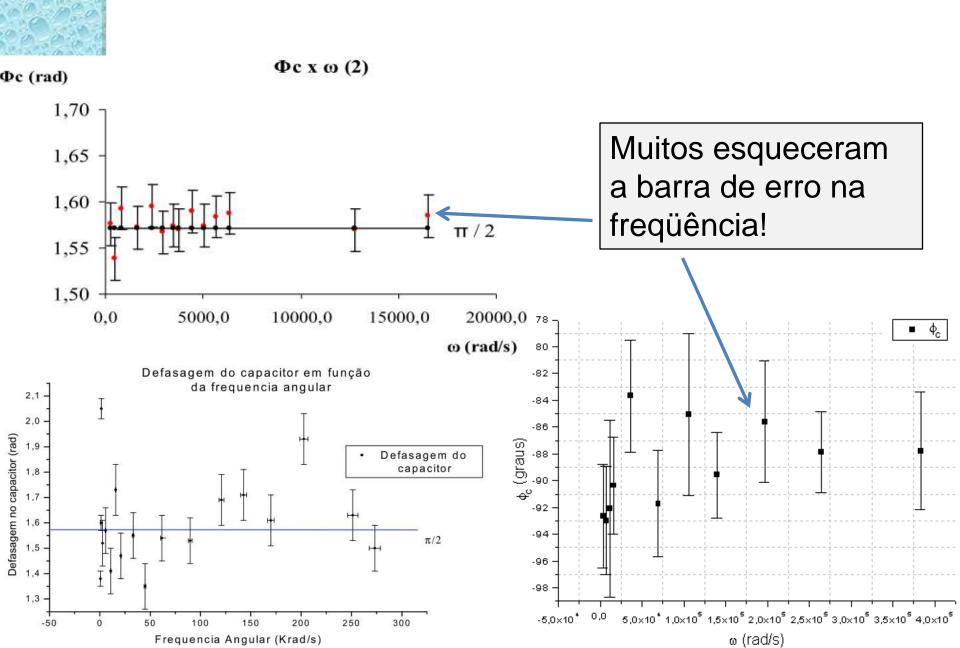
- Mostrar que V_s é a integral de V_e
 - Foto da tela do osciloscópio
 - · Inclinação do triângulo é a esperada teoricamente
 - Para quais freqüências o circuito é um integrador ?



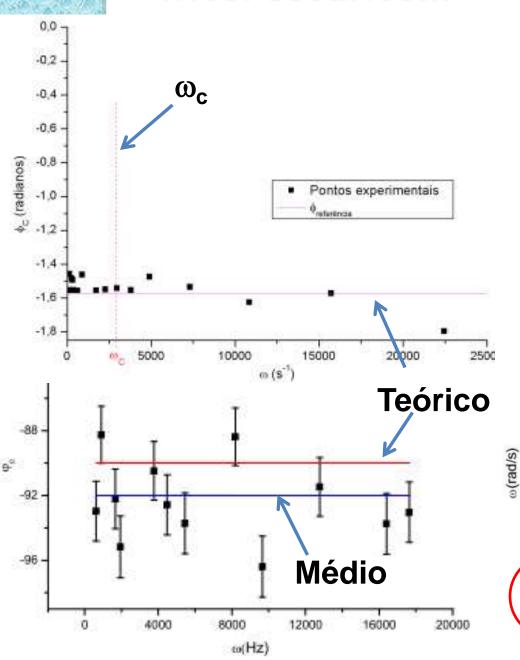
Incertezas em 1/ω



Defasagem x ω



Interessante...



Lembrando que:

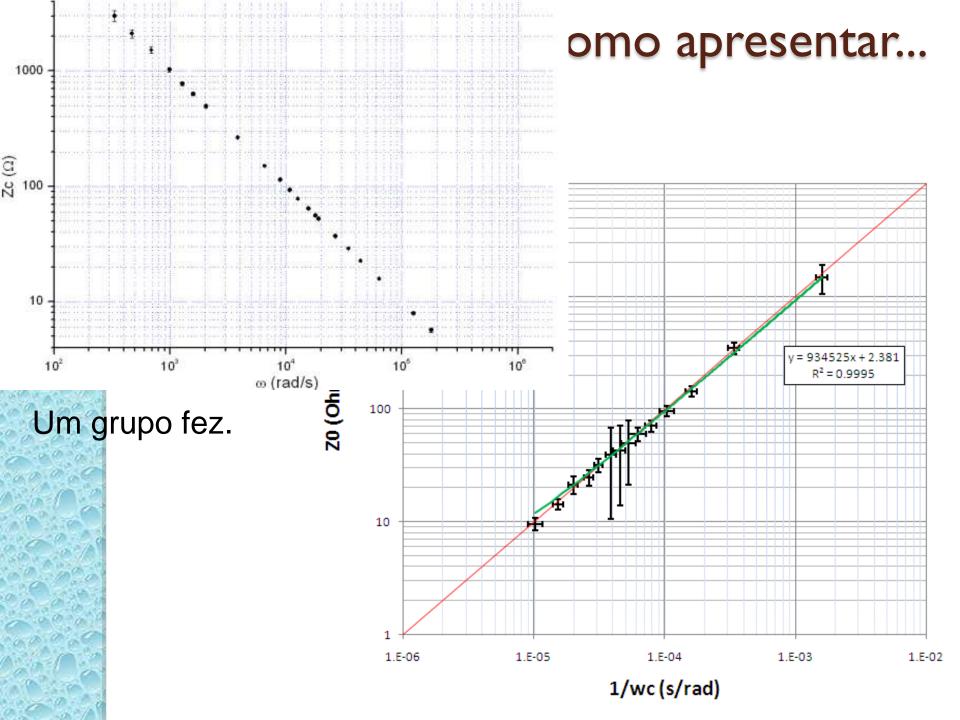
$$-\frac{\pi}{2} \equiv \phi_{C} = \omega \cdot \Delta T_{C-R}$$

$$\omega = \phi_{C} (\Delta T_{C-R})^{-1}$$

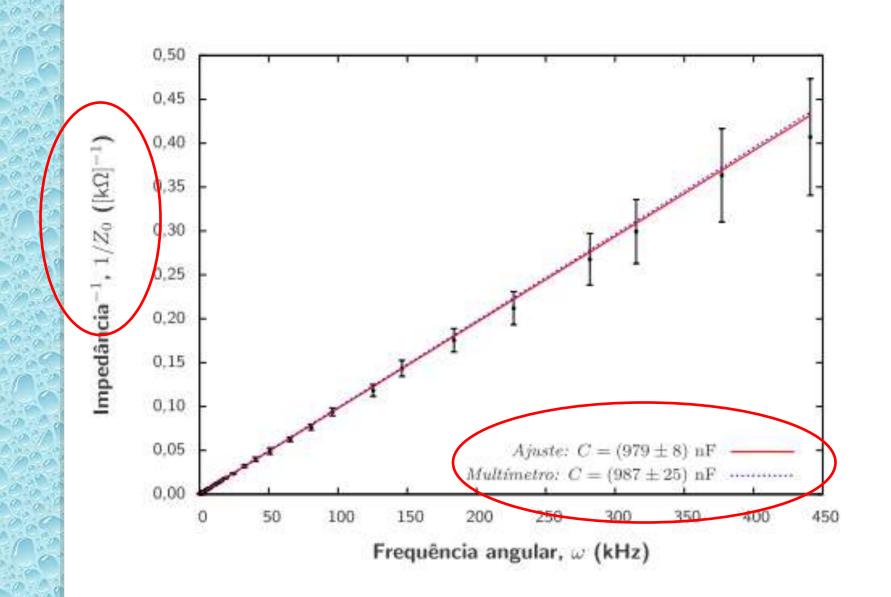
$$\phi_{c} \text{ \'e a inclinação}$$

$$\frac{32000}{30000}$$

$$\frac{32000}{20000}$$



Outra maneira



Capacitor

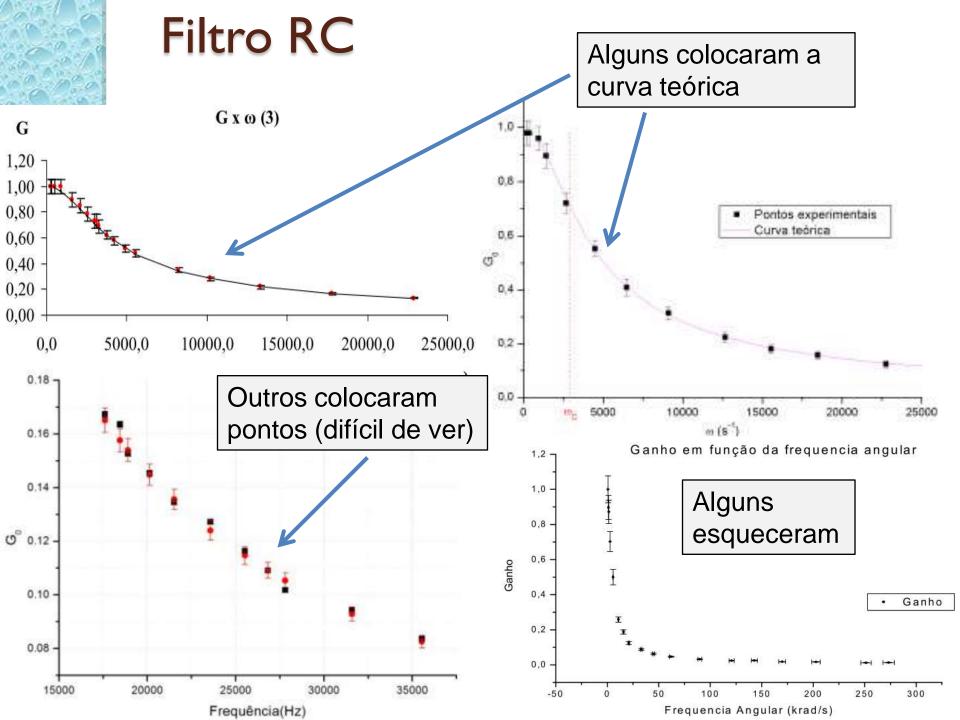
- Gráfico de Z_c experimental em função de ω
 - lembre-se que Z=Tensão/corrente \rightarrow Z = $1/\omega C$
 - Obter o valor da capacitância deste gráfico
- Gráfico de ϕ_c (fase do capacitor) em função de ω
 - Comparar com o esperado teoricamente para o capacitor

Filtro RC

- Gráfico de G_0 em função de ω
 - Comparar com o esperado teoricamente
- Gráfico de ϕ_G (fase entre V_s e V_e) em função de ω
 - Comparar com o esperado teoricamente

Integrador

- Mostrar que V_s é a integral de V_e
 - Foto da tela do osciloscópio
 - · Inclinação do triângulo é a esperada teoricamente
 - Para quais frequências o circuito é um integrador ?



Defasagem do Ganho

do sinal

 $\phi_G = \arctan$

Frequência (rad)

Outros esqueceram da teoria...

Alguns mediram corretamente e compararam com a teoria.

Outros esqueceram da curva teórica....

1.6 -

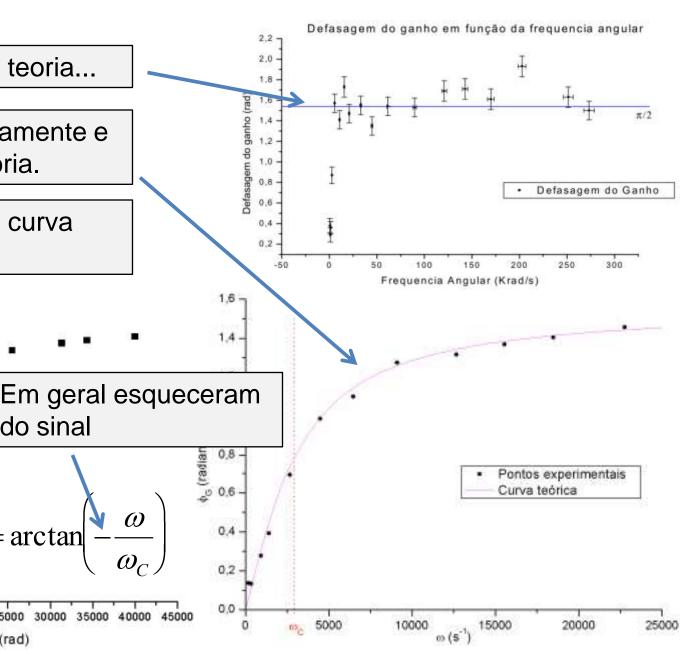
1.4

1,2 -

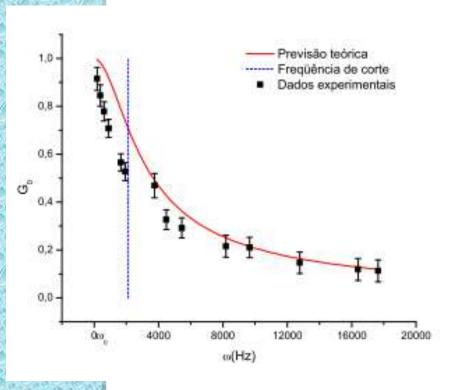
0,8

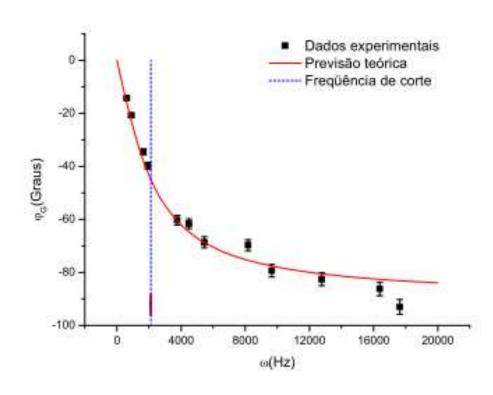
0,6

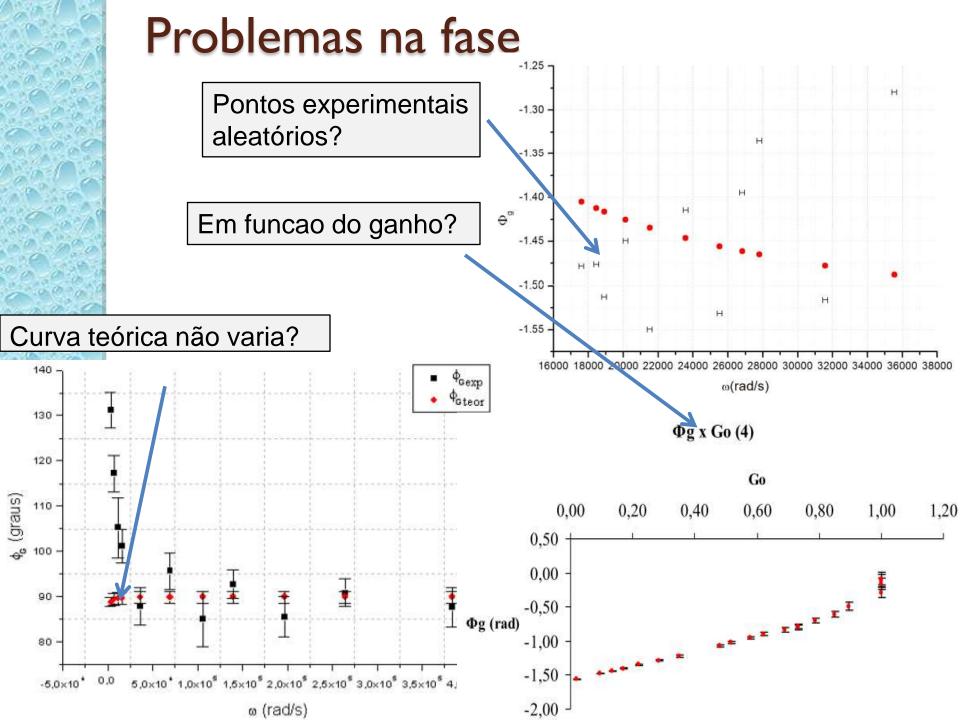
phi G (rad) 1.0



Problemas no ganho







ω_c experimental

0.6

0,3

0,2

0.1

0.0

Teve grupo que ajustou uma curva aos pontos experimentais... mas não ajustou a eq. correta!

Era necessário medir freq menores.

Usando:

$$G_0 = \frac{1}{\sqrt{1 + \left(\omega/\omega_C\right)^2}}$$

Pode-se calcular ω_c pelo ajuste da curva.

Ou então observando quando a curva passa por 1/sqrt(2)

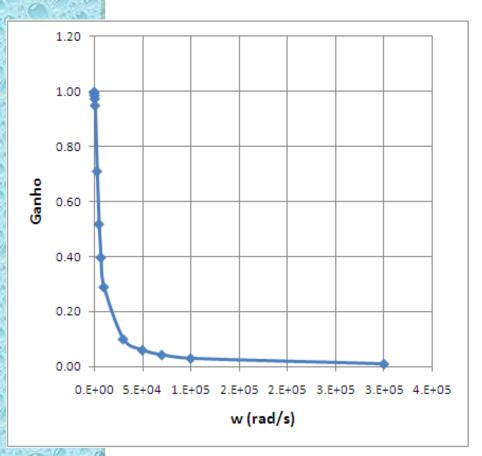
Gráfico 1.3. Ganho do circuito em função da frequência.

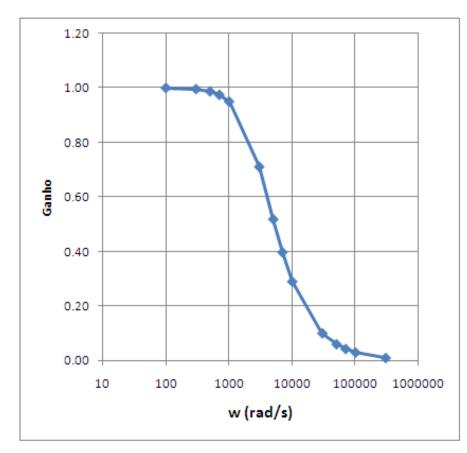
Frequencia (rad)

A equação que melhor representa essa curva é $y = (165,618 \pm 33,57)(1+x)^{(-0,72\pm0,02)}$

Apresentação

Usando uma escala logarítmica para a freqüência, vemos claramente todos os pontos. Ajuda também a perceber que devemos espaçar os pontos para freqüências mais altas.





Capacitor

- Gráfico de Z_c experimental em função de ω
 - lembre-se que Z=Tensão/corrente \rightarrow Z = $1/\omega C$
 - Obter o valor da capacitância deste gráfico
- Gráfico de ϕ_c (fase do capacitor) em função de ω
 - Comparar com o esperado teoricamente para o capacitor

Filtro RC

- Gráfico de G_0 em função de ω
 - Comparar com o esperado teoricamente
- Gráfico de ϕ_G (fase entre V_s e V_e) em função de ω
 - Comparar com o esperado teoricamente

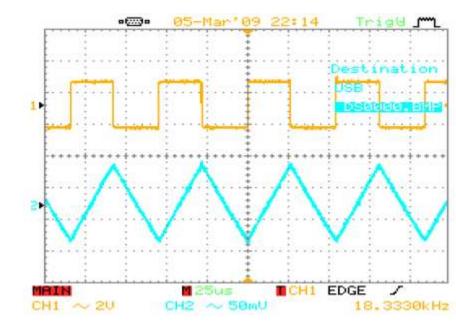
Integrador

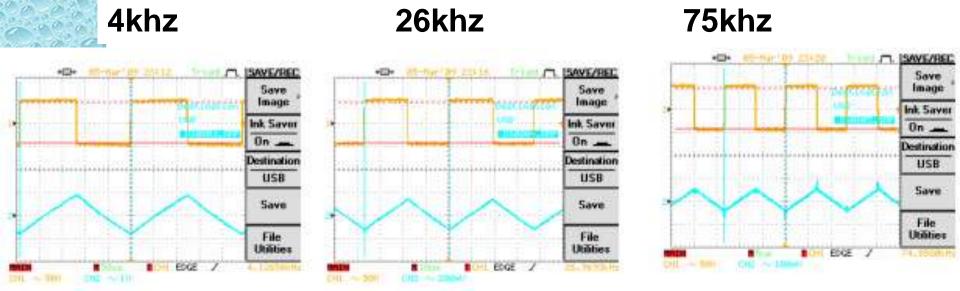
- Mostrar que V_s é a integral de V_e
 - Foto da tela do osciloscópio
 - Inclinação do triângulo é a esperada teoricamente
 - Para quais freqüências o circuito é um integrador ?

Integrador

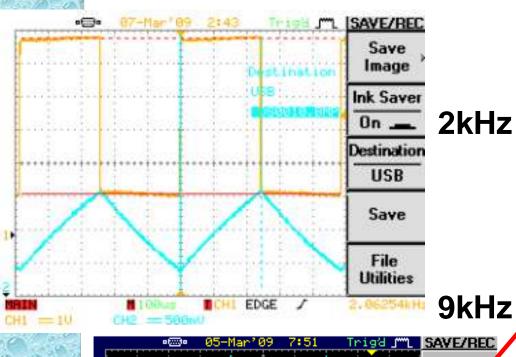
Alguns mostraram apenas para uma freqüência e discutiram os valores limites....

Outros mostraram como a onda triangular se deforma para várias freqüências.





Integrador

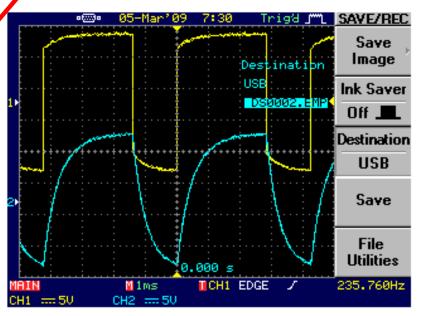


Para freqüências baixas realmente não temos um integrador!

Para alta freq as vezes da alguma problema...

9kHz

235Hz



O que deveria ter sido feito e poucos grupos fizeram....

Como:

$$\hat{V}_{S} = \frac{1}{RC} \int \hat{V}_{e} dt$$

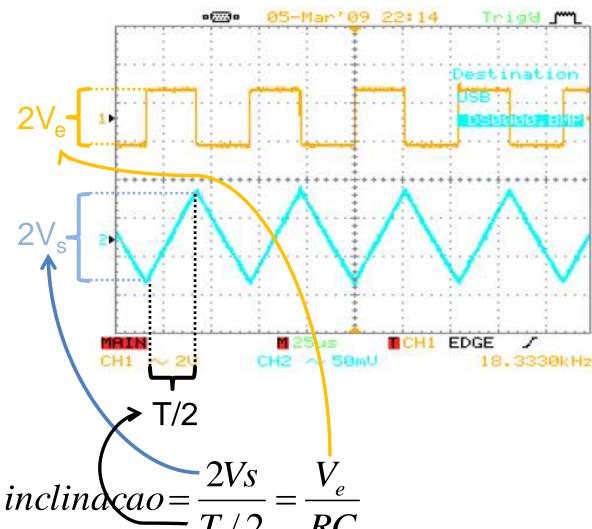
Então:

$$\frac{d\hat{V_S}}{dt} = \frac{1}{RC}\hat{V_e}$$

E como:

$$d\phi_{s} / dt = 0$$

Temos:
$$\frac{dV_S}{dt} = \frac{1}{RC}V_e \Rightarrow inclinac_{ao} = \frac{2V_S}{T/2} = \frac{V_e}{RC}$$

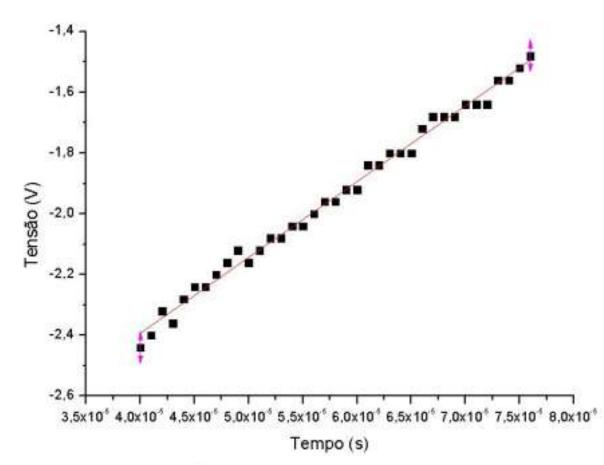


Interessante

Um grupo exportou os dados do sinal triangular e ajustou uma reta para calcular mais precisamente a inclinação!

$$y = (2495,97 \pm 36,91)x - (0,339 \pm 0,0022)$$

Valor do ajuste



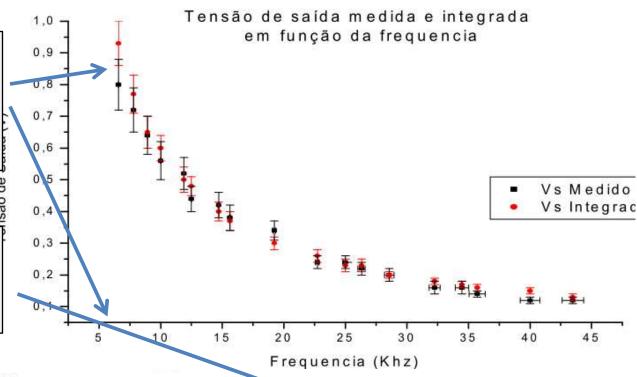
Valor "teórico"

 $c = (2508, 259 \pm 12, 135)\Omega F^{-1}$

Interessante

Tensão de saída medida e calculada (supondo integrador) não 'batem' para baixas freqs.

Outra maneira de olhar, tomando a razão entre as duas...



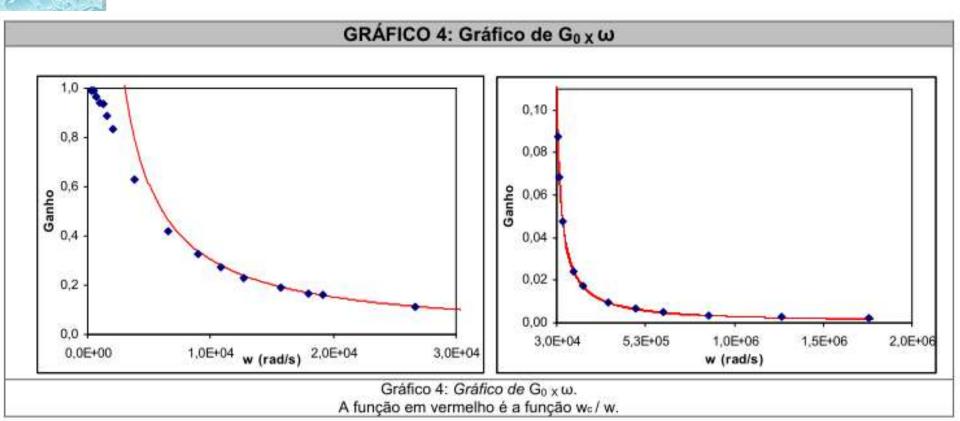
Veja a tabela abaixo:

Ve (V)	σVe (V)	Vs(V)	σVs (V)	ω (rad/s)	Razão	σRazão
9,600	0,400	2,560	0,080	17689,743	0,927	0,087
9,400	0,400	2,080	0,080	21726,187	0,947	0,266
10,400	0,600	1,400	0,060	33247,601	0,977	0,435
10,000	0,400	0,780	0,040	61612,350	1,021	0,721
10,000	0,400	0,584	0,040	78764,754	0,974	0,939
10,000	0,400	0,400	0,048	126428,370	1,076	0,101
9,800	0,400	0,300	0,036	164366,871	1,064	0,122
9,600	0,400	0,140	0,040	378345,773	1,187	0,183

Tabela 1.0 – Valores de entrada e saída e suas respectivas incertezas em Volts, valores de ω em rad/s e a razão entre o Vs experimental e o Vs teórico e suas respectivas incertezas.

Interessante

O gráfico acima mostra que para valores bem altos de w, o ganho se comporta como a função wc/w. Vemos que os dados começam a se comportar dessa forma a partir de valores de w próximos a 2,0x10^4 rad/s que é entre 6 e 7 vezes o valor da freqüência de corte. Percebe-se então que a partir destes valores pode-se considerar w >> wc.



Dedução Teórica

A onda quadrada (tensão de entrada) pode ser descrita pela equação (6), onde n é um número inteiro:

$$V_E(t) = \begin{cases} V_{pe} & \text{para } nT \leq t \leq \left(n + \frac{1}{2}\right)T \\ -V_{pe} & \text{para } \left(n + \frac{1}{2}\right)T \leq t \leq (n + 1)T \end{cases}$$
(6)

A partir disto é fácil ver que a integral em um período é nula, ou seja, vale que:

$$\int_0^t V_E(t')dt' = \int_0^{nT} V_E(t') dt' + \int_{nT}^t V_E(t') dt' = \int_{nT}^t V_E(t') dt'$$

Dessa forma, fazendo a integral em um período qualquer de V_E , temos a integral de toda a onda. Utilizando (6), para $nT \le t \le (n+1)T$, temos:

$$\int_{0}^{t} V_{E}(t')dt' = \int_{nT}^{t} V_{E}(t') dt' = \begin{cases} V_{pe}(t - nT) & \text{para } nT \leq t \leq \left(n + \frac{1}{2}\right)T \\ V_{pe}\frac{T}{2} - V_{pe}(t - nT) & \text{para } \left(n + \frac{1}{2}\right)T < t < (n + 1)T \end{cases}$$

Ou seja, a saída esperada é uma onda triangular com inclinação $\mu = \frac{1}{RC}V_{pe}$, valor máximo de $\frac{1}{RC}\frac{T}{2}V_{pe}$ e mínimo 0. Assim, o valor de pico da tensão de saída é dado por

$$V_{ps} = \frac{1}{RC} \frac{T}{2} V_{pe} = \frac{1}{2} \mu T$$

Esta Semana...



Motivação

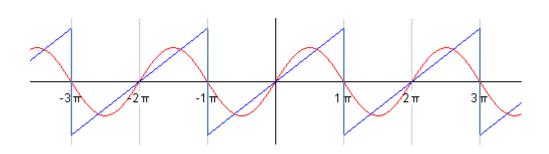
- A medida do Ganho x ω do circuito RC, semana passada, foi bastante cansativa
 - Ajustar freqüência
 - Medir Ve
 - Medir Vc
 - Repetir procedimento para cada frequência
 - Pelo menos I hora de tomada de dados
- Que tal fazer a mesma medida sem precisar variar a freqüência e em 5 minutos?
 - Fundamentos teóricos e novos métodos de análise

Séries de Fourier

 Joseph Fourier introduziu séries infinitas de funções para resolver a equação de transferência de calor em uma placa de metal.

 Não havia solução geral, apenas particulares para fonte de calor senoidal. A idéia de Fourier foi modelar uma fonte de calor complicada como uma superposição (ou combinação linear) de simples senos ou cossenos.

(1768-1830)



Séries de Fourier

- Joseph Fourier, paper submetido em 1807
 - Referees: Lagrange, Laplace, Malus e Legendre
 - Funções trigonométricas podem ser combinadas de tal forma a representar qualquer função matemática

$$f(x) = \frac{a_0}{2} + \sum_{n} (a_n \cos(nx) + b_n \sin(nx))$$

• As constantes a_n e b_n podem ser obtidas a partir de:

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$$

Séries de Fourier

Hoje em dia, usamos formalismos mais abrangentes:

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{jnx}$$
Use a fórmula de Euler e substitua na expressão anterior
$$e^{jx} = \cos x + j \sin x$$

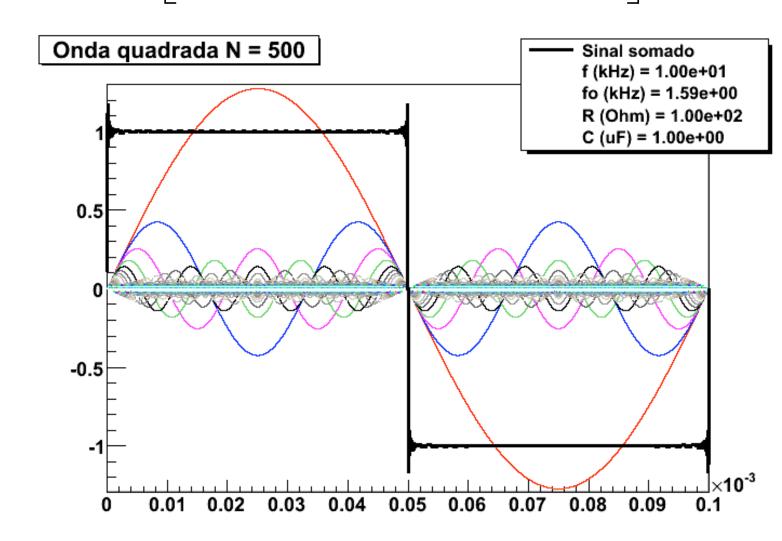
$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-jnx} dx$$

As constantes a_n e b_n da expressão tradicional podem ser obtidas como:

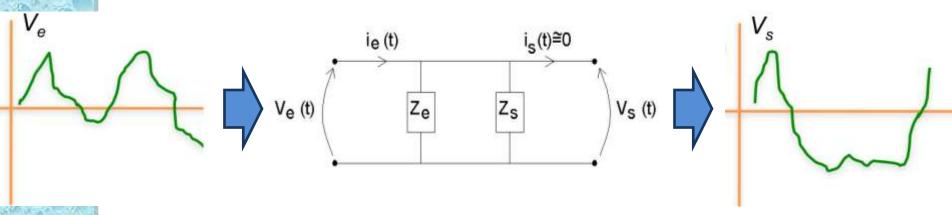
$$a_n = c_n + c_{-n}$$
, com $n = 0,1,2,...$
 $b_n = j(c_n - c_{-n})$, com $n = 0,1,2,...$

Exemplo: Onda Quadrada

$$V(t) = V_0 \frac{4}{\pi} \left[\sin(\omega t) + \frac{\sin(3\omega t)}{3} + \frac{\sin(5\omega t)}{5} + \cdots \right]$$



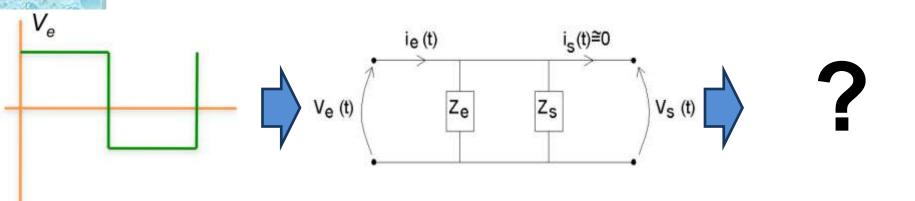
O que o circuito faz no sinal?



$$V_{e} = \begin{cases} V_{1}^{s} \sin(\omega_{1}t) + \\ V_{1}^{s} \cos(\omega_{1}t) + \\ V_{2}^{C} \sin(\omega_{2}t) + \\ V_{2}^{C} \cos(\omega_{2}t) + \\ \cdots + \\ V_{N}^{s} \sin(\omega_{N}t) + \\ V_{N}^{c} \cos(\omega_{N}t) \end{cases} \qquad O_{e} = G(\omega_{e}, R, C)$$

$$V_{e} = \begin{cases} G_{1}V_{1}^{s} \sin(\omega_{1}t + \phi_{1}) + \\ G_{1}V_{1}^{s} \cos(\omega_{1}t + \phi_{1}) + \\ G_{2}V_{2}^{c} \sin(\omega_{2}t + \phi_{2}) + \\ G_{2}V_{2}^{c} \cos(\omega_{2}t + \phi_{2}) + \\ \cdots + \\ G_{N}V_{N}^{s} \sin(\omega_{N}t + \phi_{N}) + \\ G_{N}V_{N}^{c} \cos(\omega_{N}t + \phi_{N}) \end{cases}$$

Exemplo: Onda quadrada



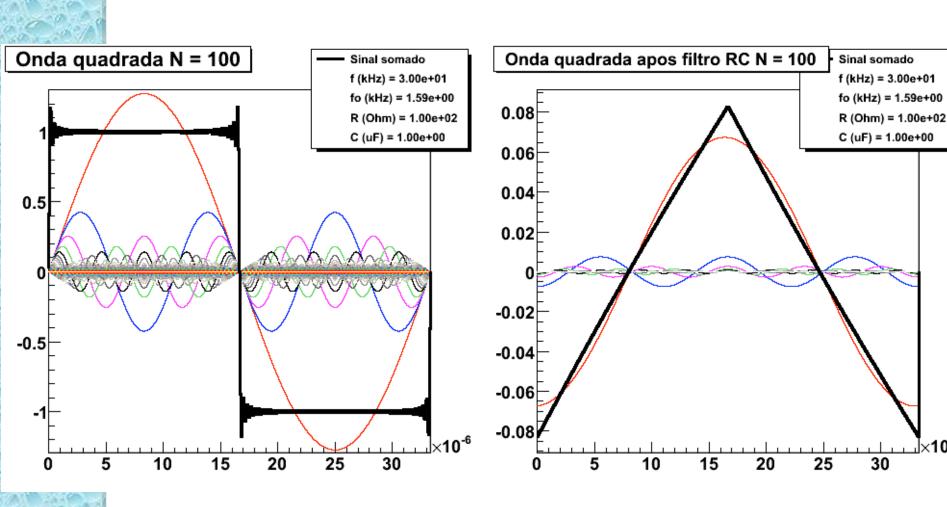
$$V_{e} = \begin{cases} \frac{4V_{0}}{\pi} \sin(\omega t) + \\ \frac{4V_{0}}{3\pi} \sin(3\omega t) + \\ \frac{4V_{0}}{5\pi} \sin(5\omega t) + \\ & \cdots \end{cases} G(\omega) = \frac{1}{\sqrt{1 + (\omega/\omega_{c})^{2}}}$$

$$\phi(\omega) = \tan^{-1}(-\omega/\omega_{c})$$

$$V_{s} = \begin{cases} G_{\omega} \frac{4V_{0}}{\pi} \sin(\omega t + \phi_{\omega}) + \\ G_{3\omega} \frac{4V_{0}}{3\pi} \sin(3\omega t + \phi_{3\omega}) + \\ G_{5\omega} \frac{4V_{0}}{5\pi} \sin(5\omega t + \phi_{5\omega}) + \\ & \cdots \end{cases}$$

Filtro RC (R=I, C=I μ F) $F_c \sim 1.5$ kHz

30000Hz



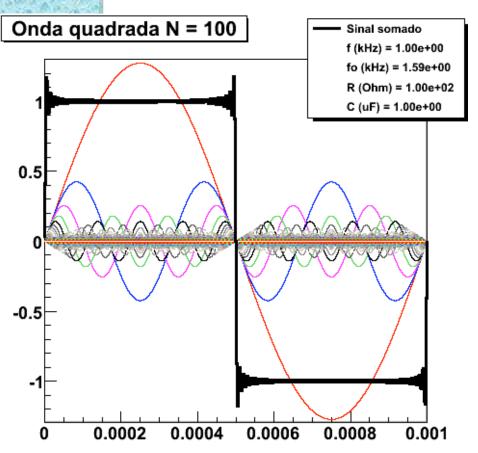
Como Analisar as Freqüências de um Sinal

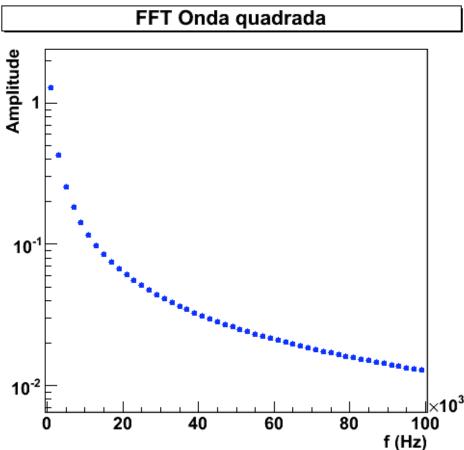
- Análise de Fourier ou transformada de Fourier
 - É um gráfico no qual o eixo-X representa a freqüência da componente de Fourier e o eixo-Y mostra a amplitude daquela componente
 - Deste modo pode-se ver claramente qual a contribuição de cada harmônica para o sinal final e podemos projetar os circuitos com o mínimo de interferência
 - Abre inúmeras possibilidades para tratamento de sinais e imagens.
- Métodos numéricos de obtenção para sinais discretos
 - FFT " Fast Fourier Transform

Exemplo: Onda Quadrada

Sinal

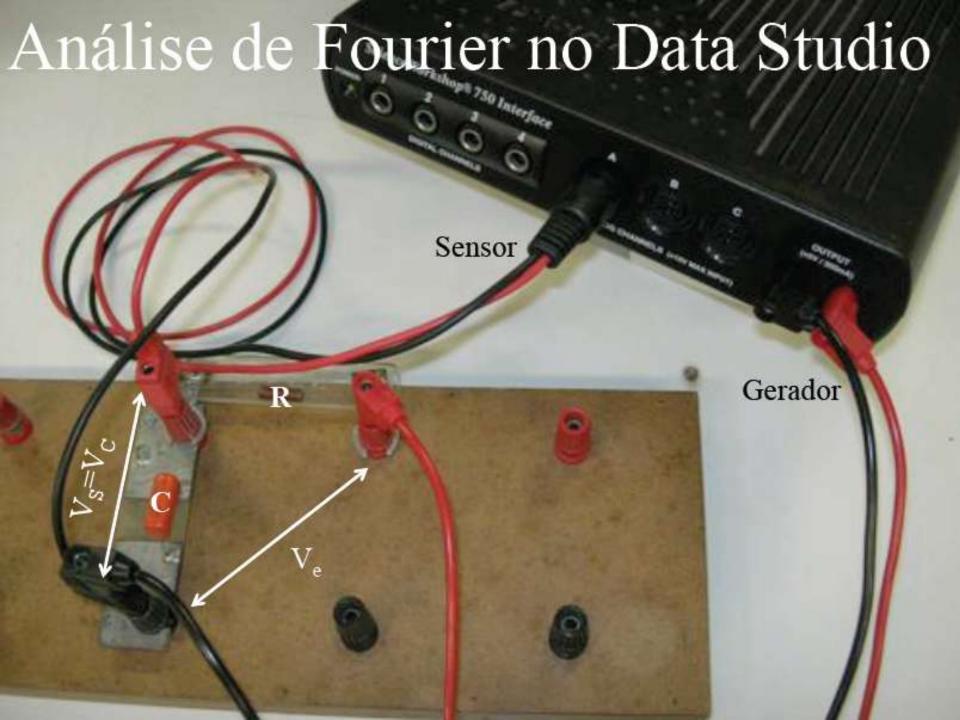
Transformada de Fourier Espectro de amplitude

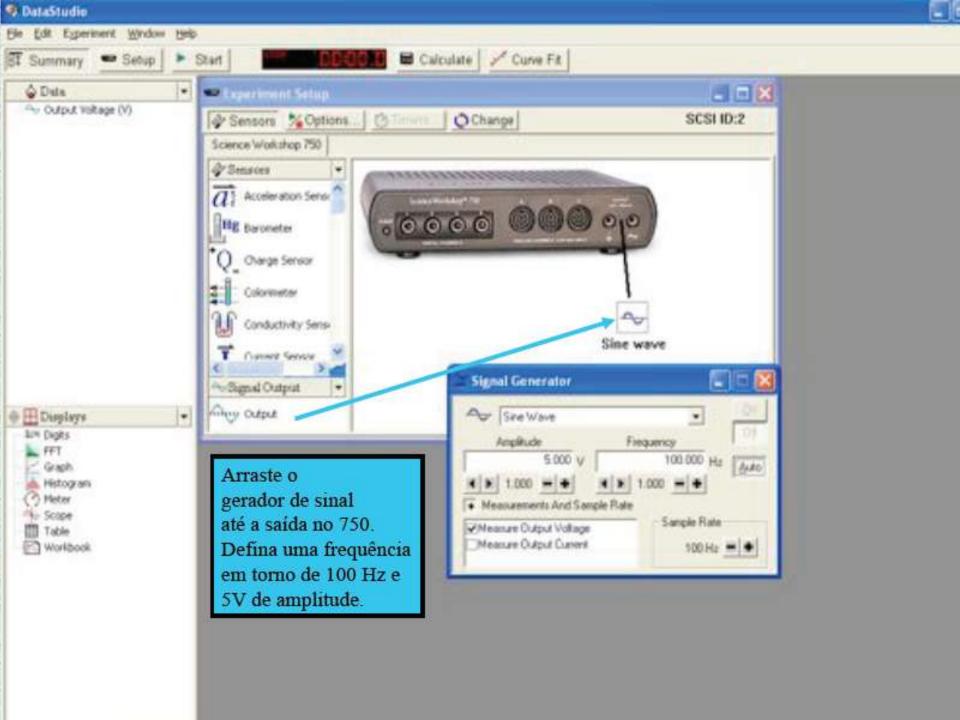


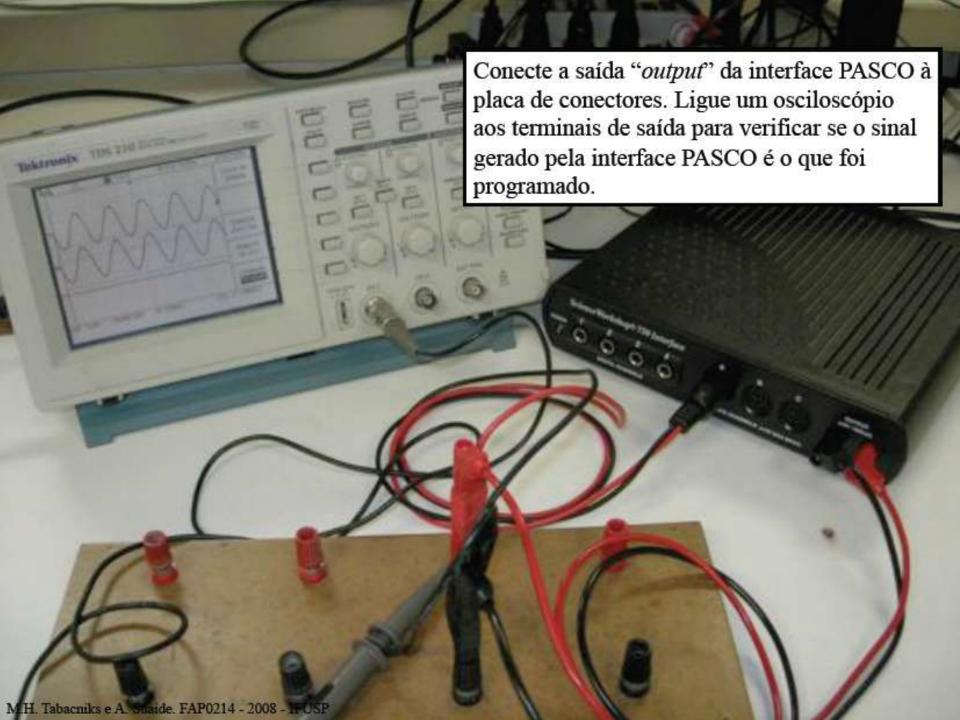


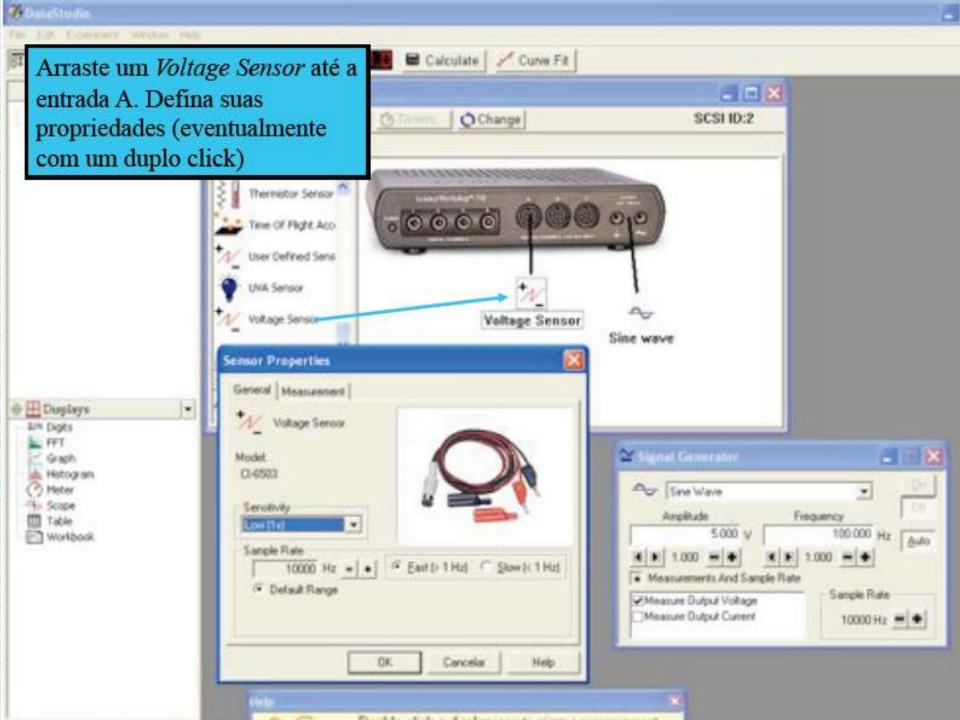
Objetivos da Semana

- Fazer analise de Fourier experimental usando o sinal do DataStudio
 - Onda senoidal (comparar com teoria)
 - Onda quadrada (comparar com teoria)
 - Onda triangular (comparar com teoria)
- Fazer análise de Fourier experimental usando o sinal de saída do filtro RC:
 - Onda triangular (alta freq.)
 - Obter a curva de ganho (baixa freq.)
 - Comparar tudo com os resultados anteriores







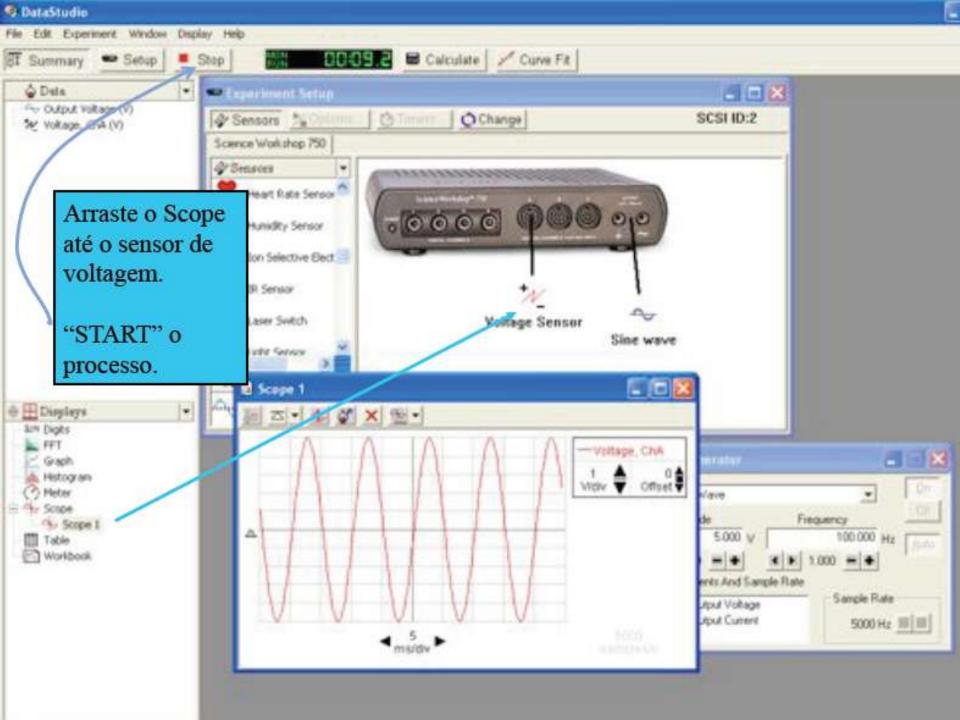


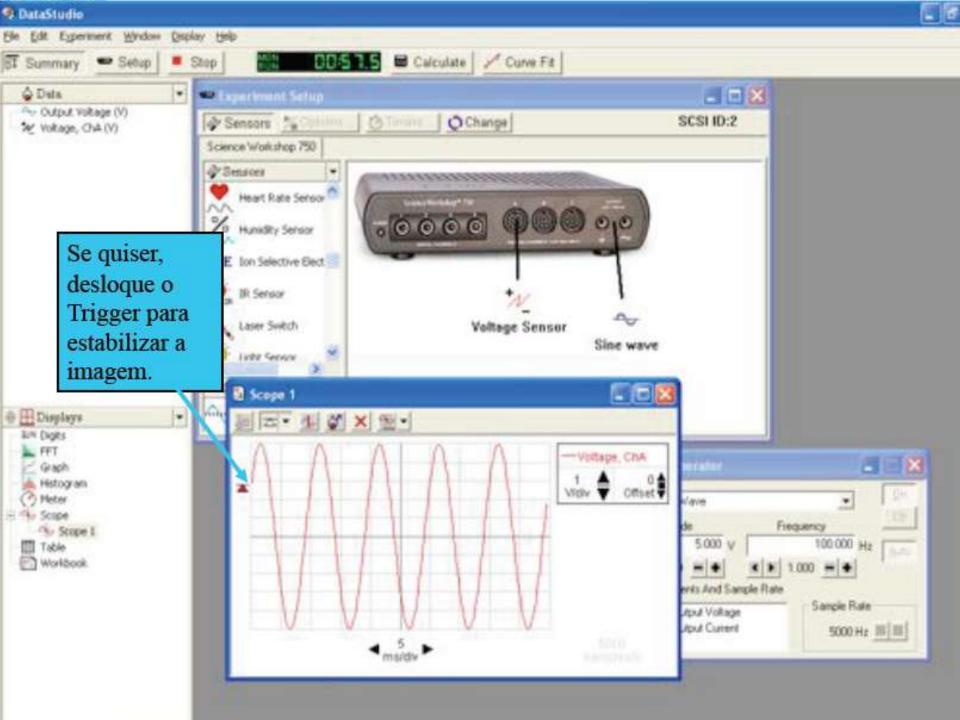
Configuração do DataStudio

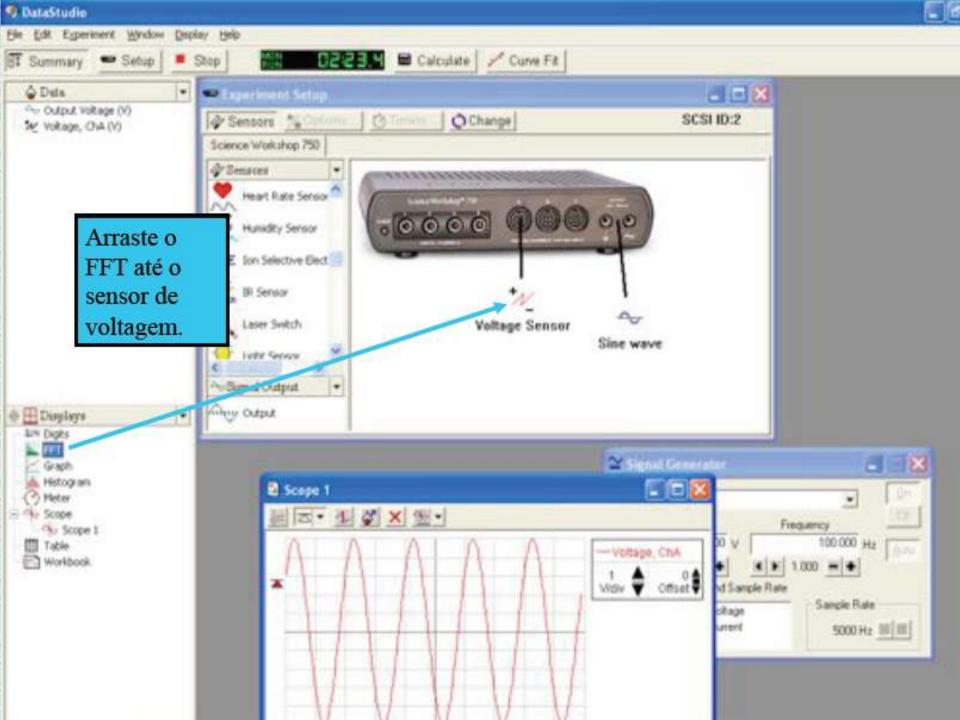
• As conexões físicas do 750 foram feitas.

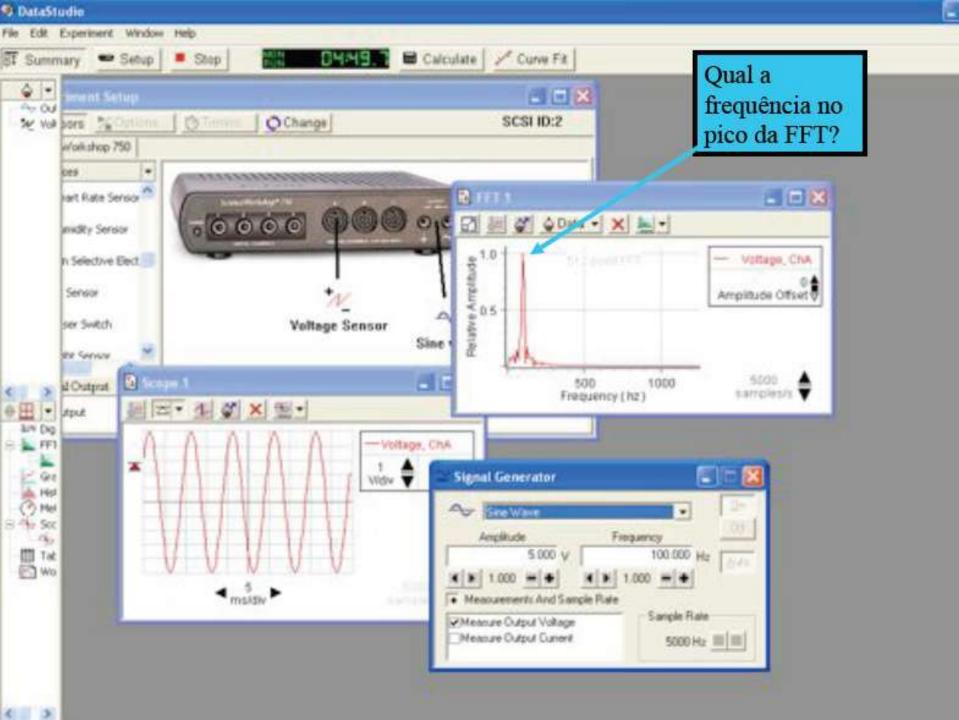
As conexões virtuais do 750 foram feitas.
 Definindo a saída como um gerador senoidal e a entrada como um sensor de voltagem.

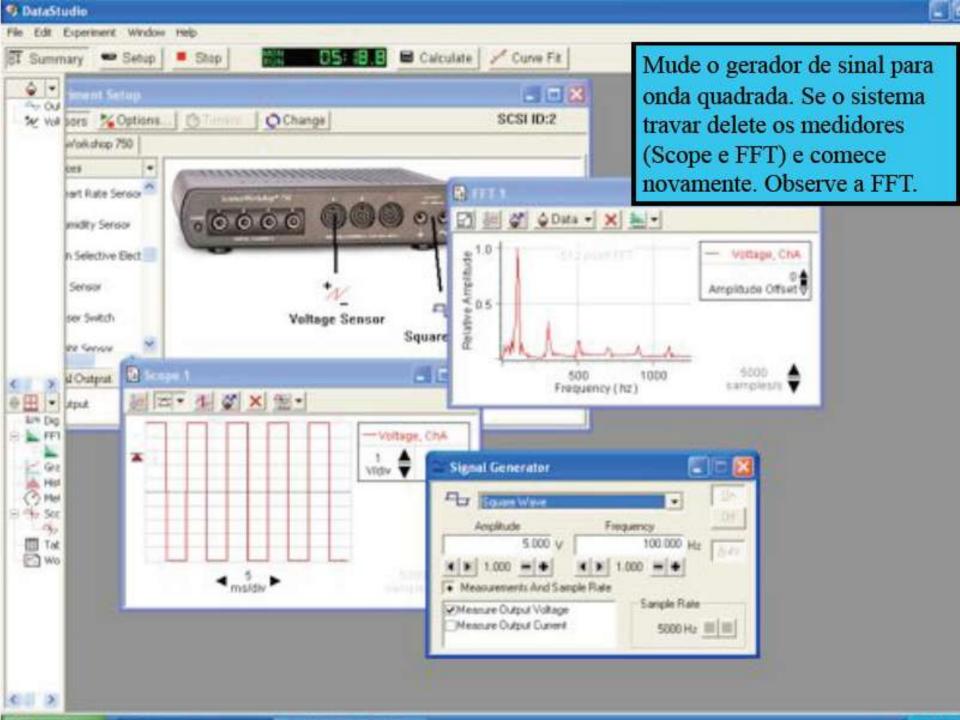
Falta medir: Isto é, definir qual "instrumento de medida" deverá ser ligado ao sensor de voltagem...

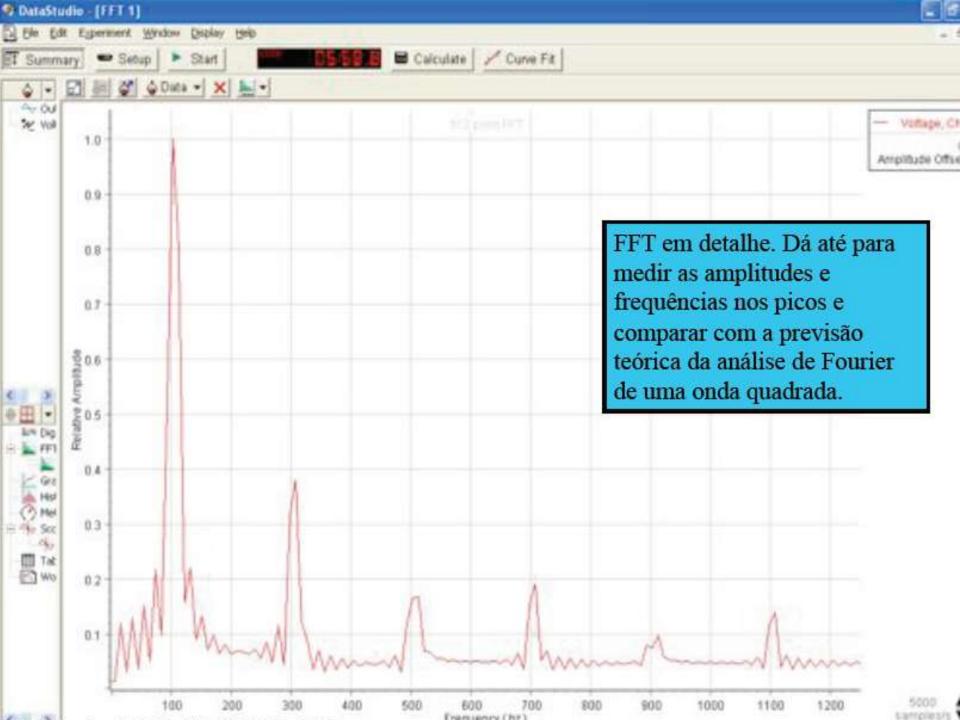


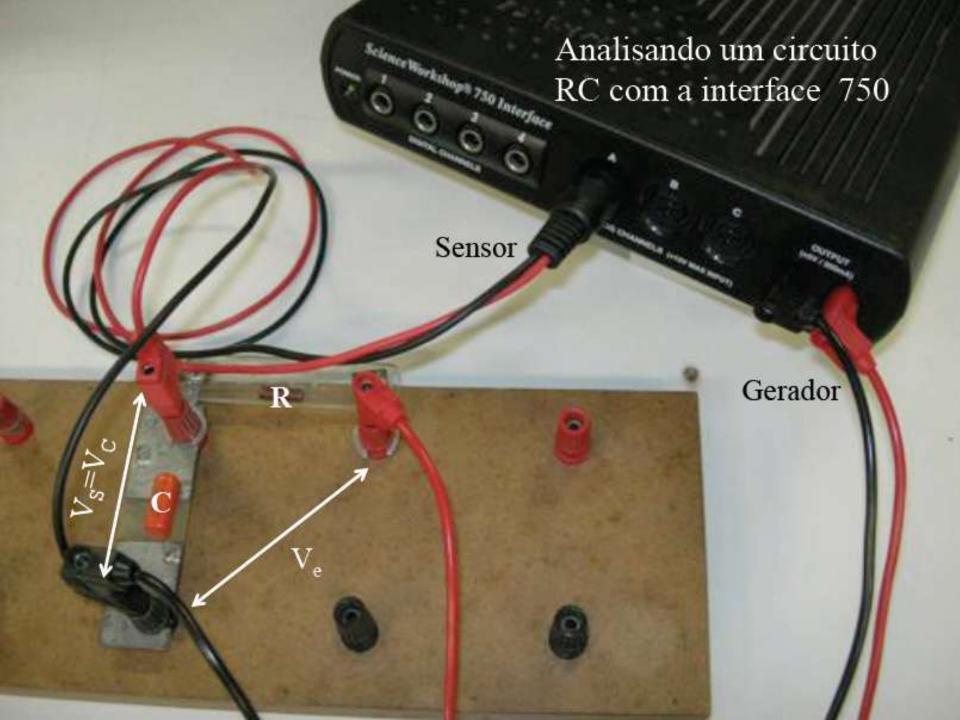


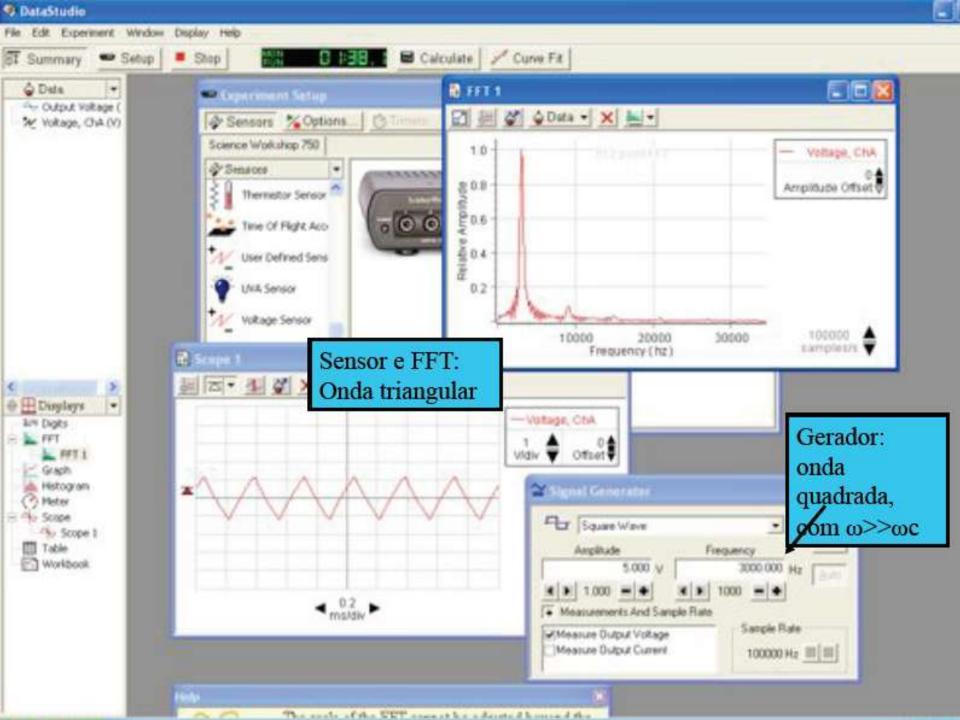












Atividades da Semana 1

- Fazer analise de Fourier experimental usando o sinal do DataStudio
 - Onda senoidal
 - Onda quadrada
 - Onda triangular
 - Obter as amplitudes das freqüências que compõem o sinal e comparar quantitativamente com previsão teórica
 - Gráfico de A(f) x f

Atividades da Semana 2

- Fazer análise de Fourier experimental usando o sinal de saída do filtro RC:
 - Onda triangular (alta freq.)
 - Obter as amplitudes das freqüências que compõem o sinal e comparar quantitativamente com previsão teórica
 - Gráfico de A(f) x f, comparando com dados anteriores e teoria.
- Obter a curva de ganho (baixa freq.)
 - Fazer a FFT do sinal de entrada e de saída, ao mesmo tempo, e obter a curva de ganho do circuito RC
 - comparar com previsão teórica
 - DICA: Para uma boa curva, escolha a freqüência como sendo ~1/3 de fc. Explique porque no relatório.
 - Gráfico de G x f, comparando com dados anteriores e teoria.