Física Experimental III

Notas de aula: www.fap.if.usp.br/~hbarbosa

LabFlex: www.dfn.if.usp.br/curso/LabFlex

Experiencia 2, Aula 2

Prof. Henrique Barbosa

hbarbosa@if.usp.br

Ramal: 7070

Ed. Basílio Jafet, sala 229

Movimento de uma partícula em um campo eletromagnético

 A trajetória de uma partícula qualquer pode ser descrita resolvendo-se as equações de movimento

$$\vec{F} = m\vec{a}$$

Ou seja, no campo EM:

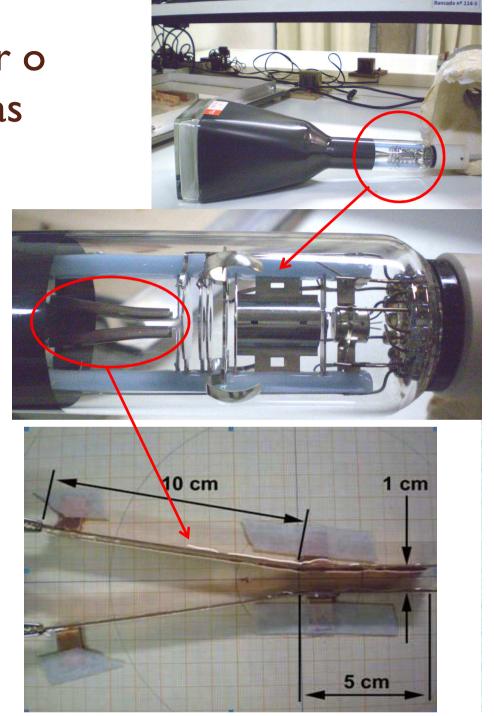
$$m\frac{d}{dt}\vec{v} = q(\vec{E} + \vec{v} \times \vec{B})$$

Precisamos conhecer o campo entre as placas

Modelo em escala

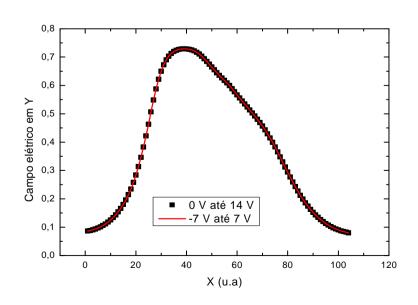
Como é o campo?

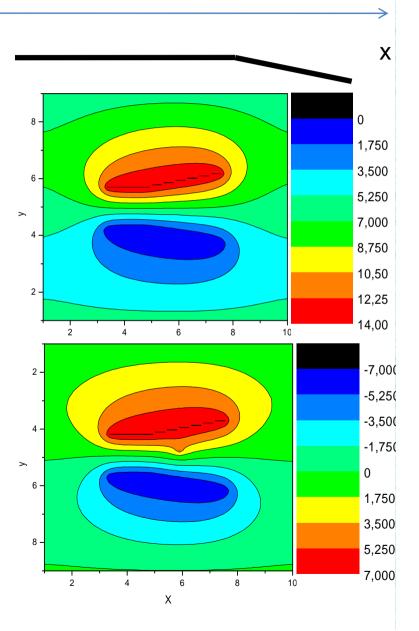
- É uniforme?
- Efeitos de borda?
- Quais são as superfícies equipotenciais?



Simetrias...

- O problema é simétrico em torno do eixo x.
 - Porque o potencial não é simétrico?
 - O Potencial é definido a menos de uma constante
 - · A grandeza física é o campo elétrico





Como (então) determinar o potencial elétrico?

- Mapeamento do campo
 - Medir as equipotenciais e obter o gradiente experimentalmente
 - Feito na semana passada
- Como comparar estes resultados com uma previsão teórica?
 - Devemos resolver as equações para o campo, ou potencial.
 - Como?

Comparação teórica

Lei de Gauss

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\mathcal{E}_0} \implies \vec{\nabla} \cdot (-\nabla \cdot V) = \frac{\rho}{\mathcal{E}_0}$$

• Equação de Poisson para o potencial

$$\nabla^2 V = -\frac{\rho}{\mathcal{E}_0}$$

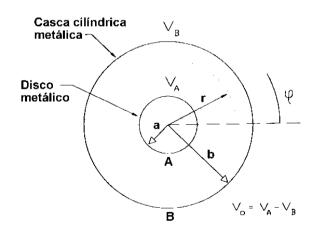
 Na ausência de cargas livres (Equação de Laplace)

$$\nabla^2 V = 0$$

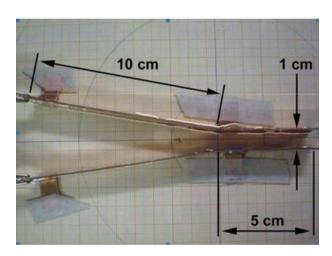
Resolvendo a equação de laplace

$$\nabla^2 V = 0$$

- Sistemas simétricos
 - Resolução algébrica fácil



- Sistemas mais complexos
 - Como resolver?



$$V(r) = A \ln r + B$$

$$V(x,y) = ?$$

Vamos olhar o Laplaciano em duas dimensões:

$$\nabla^2 V = \frac{\partial^2}{\partial x^2} V(x, y) + \frac{\partial^2}{\partial y^2} V(x, y) = 0$$

- Como calcular estas derivadas?
 - Aproximação numérica para derivada

$$\frac{\partial}{\partial x}V(x,y) \approx \frac{\Delta V}{\Delta x} = \frac{V(x + \Delta x/2, y) - V(x - \Delta x/2, y)}{\Delta x}$$

Vamos agora calcular a derivada segunda

$$\frac{\partial^2}{\partial x^2}V(x,y) \approx \frac{\partial}{\partial x} \left(\frac{V(x + \Delta x/2, y) - V(x - \Delta x/2, y)}{\Delta x} \right)$$

$$\approx \frac{1}{\Delta x} \left(\frac{\partial}{\partial x} V(x + \Delta x/2, y) - \frac{\partial}{\partial x} V(x - \Delta x/2, y) \right)$$

 Vamos calcular o primeiro termo da expressão acima:

$$\frac{\partial}{\partial x}V(x+\Delta x/2,y)$$

• Cálculo do primeiro termo:
$$\frac{\partial}{\partial x}V(x+\Delta x/2,y) = \frac{V(x+\Delta x/2+\Delta x/2,y)-V(x+\Delta x/2-\Delta x/2,y)}{\Delta x}$$

Ou seja:

$$\frac{\partial}{\partial x}V(x + \Delta x/2, y) = \frac{V(x + \Delta x, y) - V(x, y)}{\Delta x}$$

Do mesmo modo para o segundo termo:

$$\frac{\partial}{\partial x}V(x-\Delta x/2,y) = \frac{V(x,y)-V(x-\Delta x,y)}{\Delta x}$$

Assim, as derivadas segunda, em x e y, valem:

$$\frac{\partial^2}{\partial x^2}V(x,y) = \frac{V(x+\Delta x,y) - 2V(x,y) + V(x-\Delta x,y)}{\Delta x^2}$$

$$\frac{\partial^2}{\partial y^2}V(x,y) = \frac{V(x,y+\Delta y) - 2V(x,y) + V(x,y-\Delta y)}{\Delta y^2}$$

• Se eu escolho $\Delta x = \Delta y = \Delta$ eu posso resolver a equação de Laplace facilmente

$$\frac{\partial^2}{\partial x^2}V(x,y) + \frac{\partial^2}{\partial y^2}V(x,y) = 0$$

• Substituindo as derivadas calculadas e fazendo $\Delta x = \Delta y = \Delta$ a equação de Laplace fica:

$$\frac{V(x+\Delta,y) + V(x-\Delta,y) - 4V(x,y) + V(x,y+\Delta) + V(x,y-\Delta)}{\Delta^{2}} = 0$$

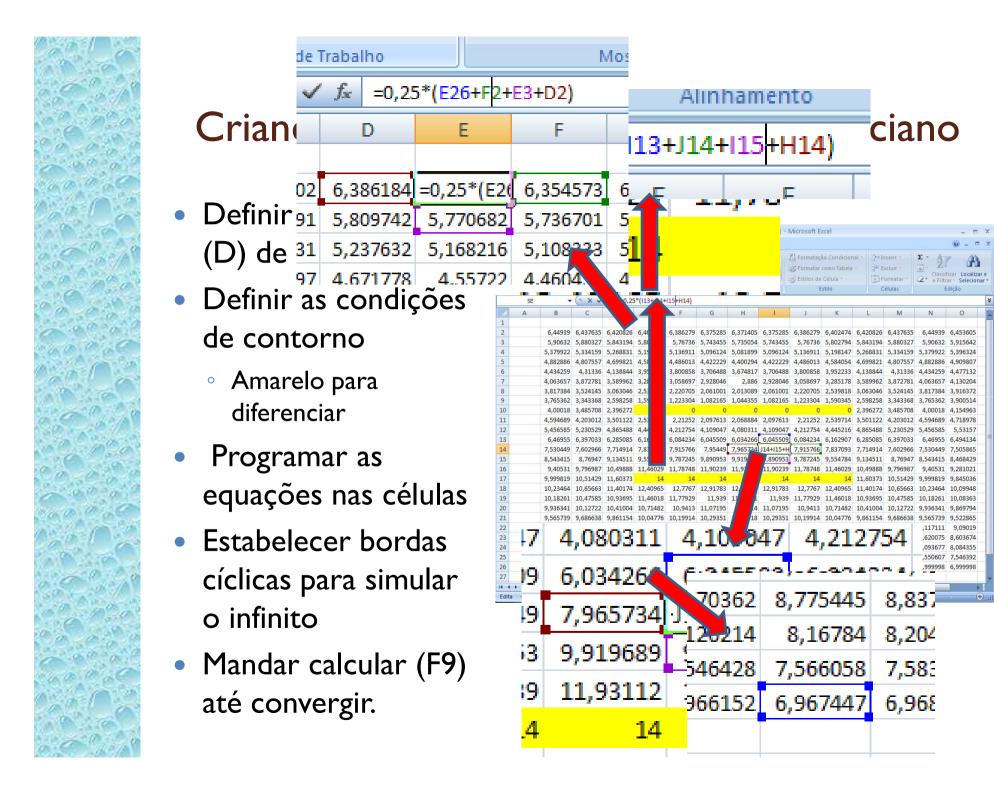
Cuja solução é:

$$V(x,y) = \frac{1}{4} \left(V(x+\Delta,y) + V(x-\Delta,y) + V(x,y+\Delta) + V(x,y-\Delta) \right)$$

- Ou seja:
 - A solução da equação de Laplace diz que o potencial em um ponto é dado pela MÉDIA SIMPLES dos potenciais nas vizinhanças.

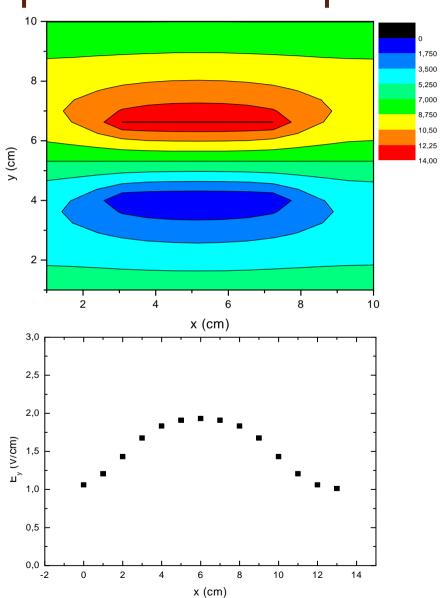
 $U(x,y+\Delta)$

- Podemos usar o EXCEL!!!!
- Consequências Físicas

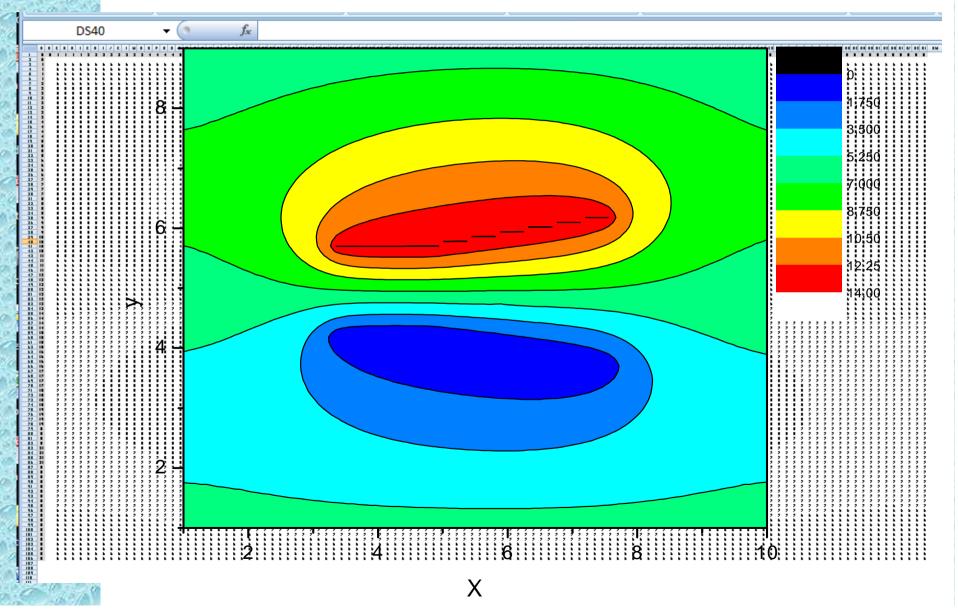


Criando um Excel para calcular o Laplaciano

- Copiar a matriz para o Origin ou programa gráfico de sua preferência
- Fazer a análise como se fossem dados normais de potencial
 - Calcular campos
 - equipotenciais
 - etc.



Um exemplo com uma malha grande (mais precisão)

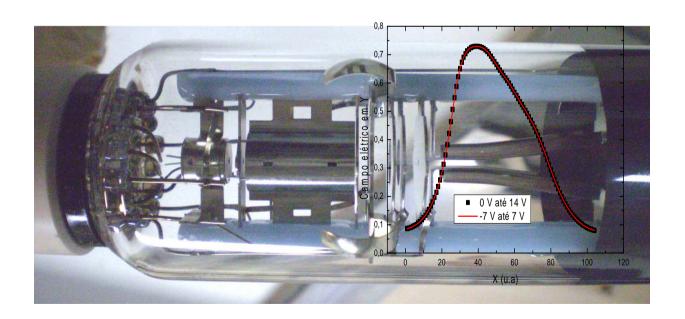


Atividades para a próxima semana (I)

- Implementar a geometria das placas utilizadas no Excel e resolver o problema numericamente.
 - Tem também o programa QFIELD, que faz a mesma coisa (quem quiser tentar)
- Calcular as componentes do campo ao longo do eixo de simetria e superpor aos dados
 - Entregar o gráfico com simulação superposta aos dados experimentais.

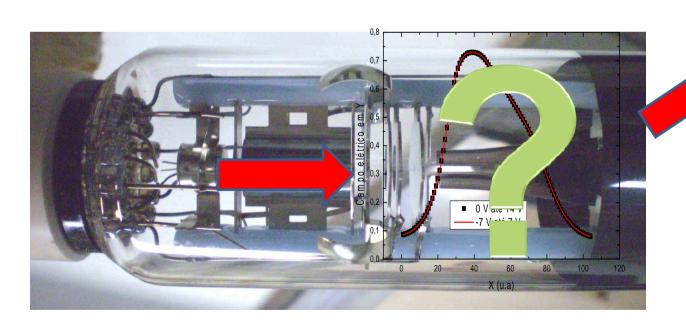
O que nós já sabemos

- Campo elétrico entre as placas
 - Experimental e teórico (!)



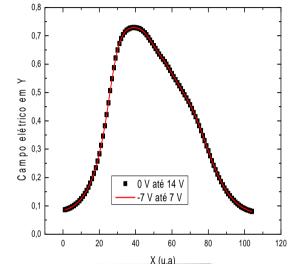
O Próximo passo

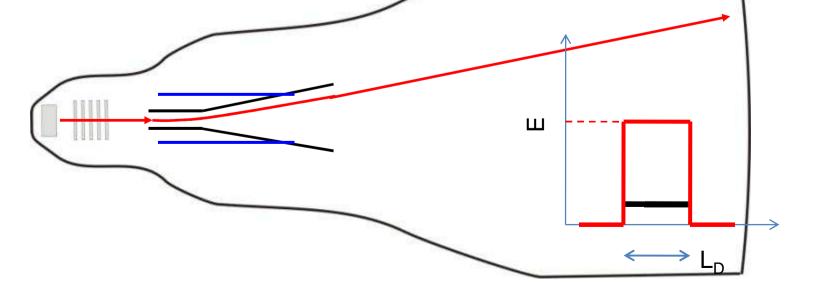
- Como gerar elétrons
- Estudar o movimento destes elétrons no campo gerado.



Simplificando o problema

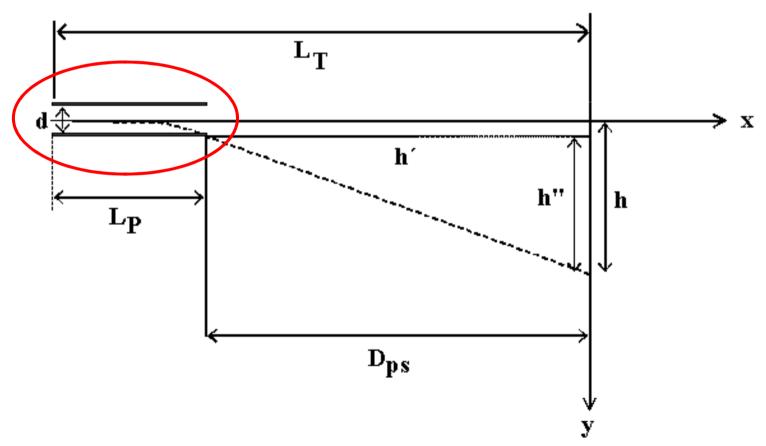
- Problema real
 - Efeitos de borda, campo não uniforme
- Tentativa teórica
 - Solução do problema ideal
 - Podemos descrever o movimento destas partículas supondo um campo ideal?





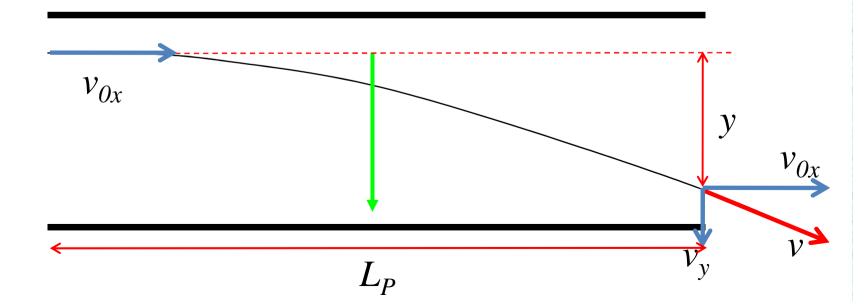
Simplificando a geometria...

• Sistema de placas paralelas ideais, com um anteparo a uma distância D_{ps} . Qual a deflexão (h) do feixe por estas placas?



Movimento uniforme em x

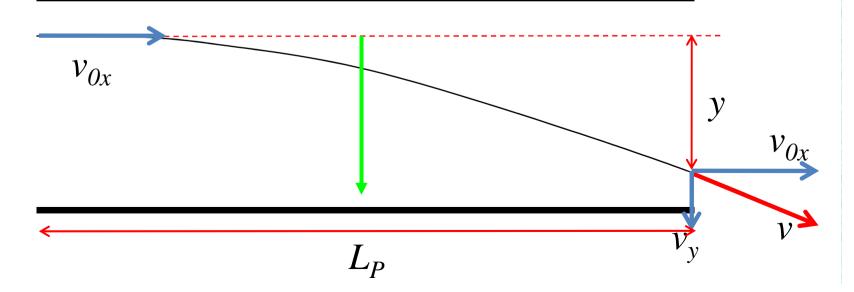
$$t = \frac{L_P}{v_{0x}}$$



Movimento uniformemente variado em y

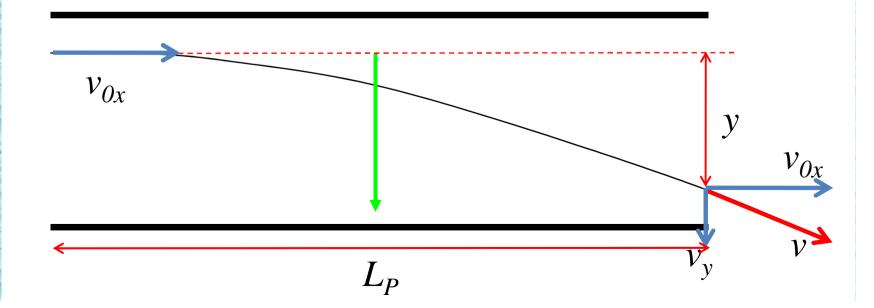
$$\vec{F} = q\vec{E} \implies F_{y} = qE \implies a_{y} = \frac{qE}{m}$$

$$v_{y} = v_{0y} + a_{y}t \implies v_{y} = \frac{qE}{m}t \implies v_{y} = \frac{qEL_{P}}{mv_{0x}}$$



Movimento uniformemente variado em y

$$y = y_0 + v_{0y}t + \frac{1}{2}a_yt^2 \implies y = \frac{qE}{2m}\left(\frac{L_P}{v_{0x}}\right)^2$$



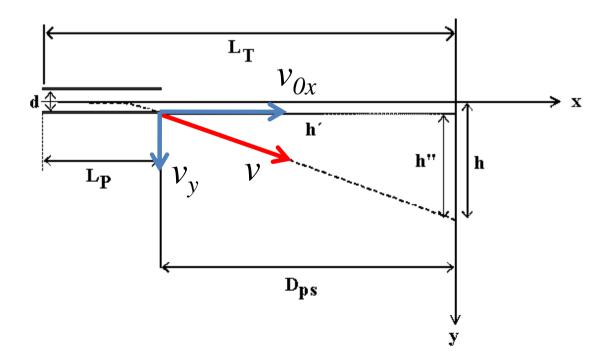
 Após as placas voltamos a ter movimento uniforme

$$t = \frac{D_{PS}}{v_{0x}} \qquad h'' = v_{y}t = \frac{qEL_{P}}{mv_{0x}} \frac{D_{PS}}{v_{0x}}$$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad$$

 O deslocamento total é a soma dos dois deslocamentos

$$h = y + h'' = \frac{qE}{2m} \left(\frac{L_P}{v_{0x}}\right)^2 + \frac{qE}{m} \frac{L_P D_{PS}}{v_{0x}^2} = \frac{qE L_P}{2m v_{0x}^2} \left(\frac{L_P}{2} + D_{PS}\right)$$



 O deslocamento total é a soma dos dois deslocamentos

$$h = \frac{qEL_P}{2mv_{0x}^2} \left(\frac{L_P}{2} + D_{PS} \right)$$

Ou seja:

$$h = A \frac{E}{v_{0x}^2}$$

h é proporcional ao campo elétrico e inversamente proporcional ao quadrado da velocidade

• Em um capacitor ideal, o campo vale:

$$|E| = V_P/d$$

 A velocidade do elétron depende da tensão de aceleração através de:

$$K_{cin} = qV_{AC} \implies \frac{1}{2}mv_{0x}^2 = qV_{AC}$$

• Ou seja:

$$h = A \frac{E}{v_{0x}^2} = A' \frac{V_P}{V_{AC}}$$

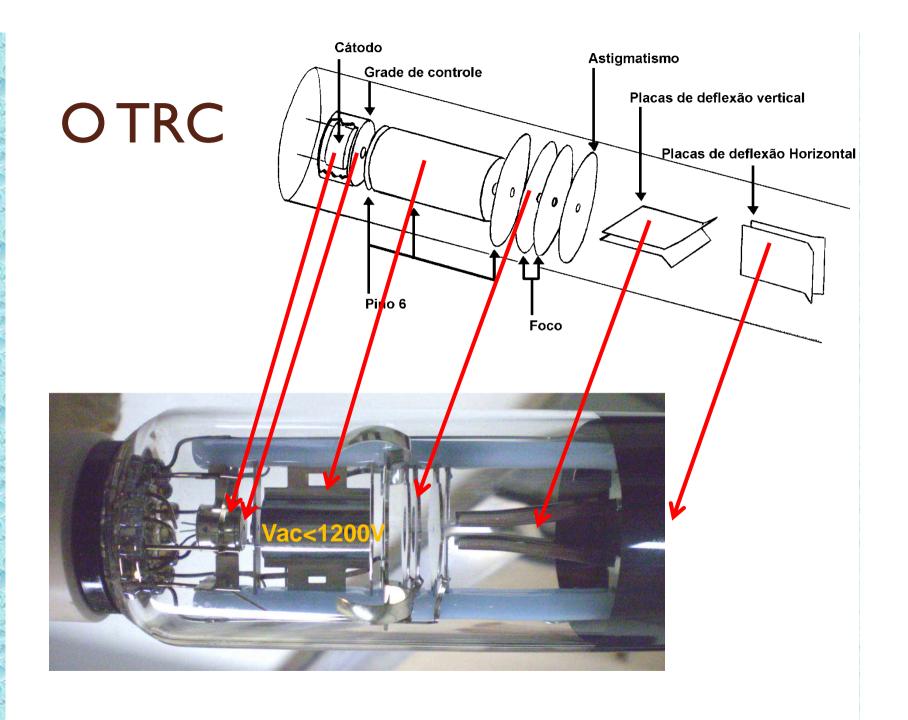
h é proporcional à tensão entre as placas e inversamente proporcional à tensão de aceleração dos elétrons

• Em uma situação com um sistema ideal, temos:

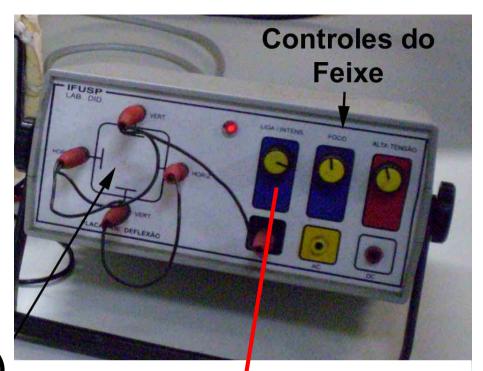
$$h = A' \frac{V_P}{V_{AC}}$$

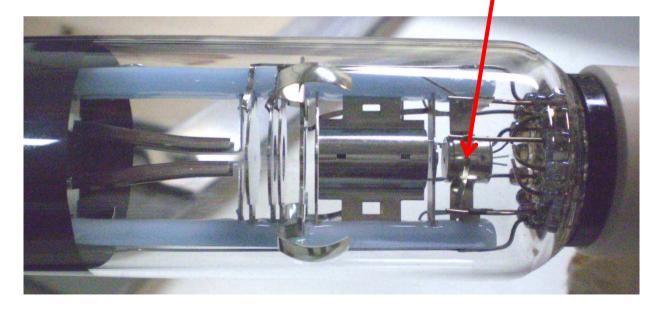
 O deslocamento é proporcional à tensão entre as placas e inversamente proporcional à tensão de aceleração dos elétrons

 Será que esta hipótese é verdadeira? Será que podemos simplificar o problema de campo não uniforme para um problema ideal?

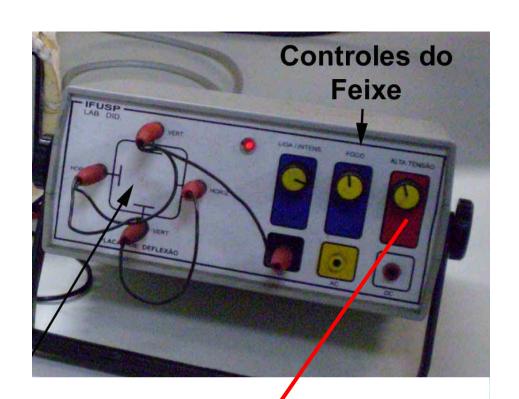


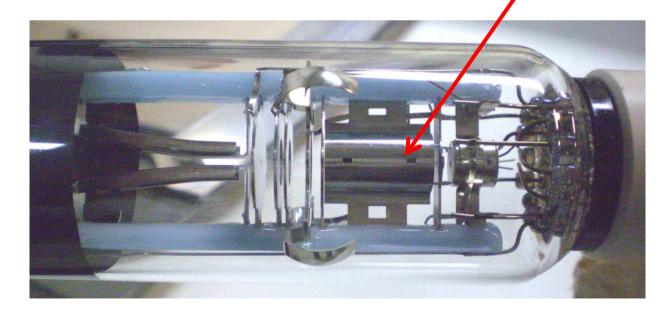
- Liga TRC
- Controla intensidade do feixe (temperatura)



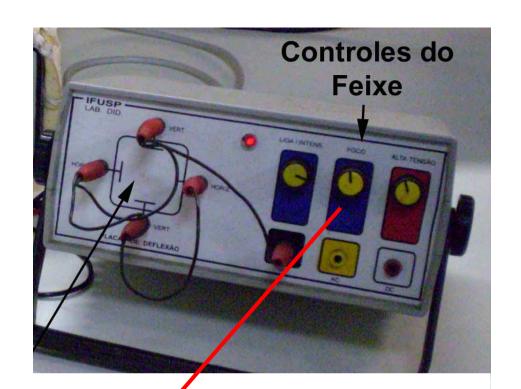


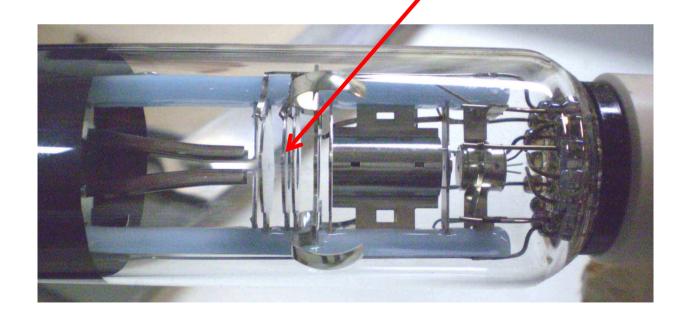
- Alta tensão (até 1200 V)
- Acelera feixe
 - \bullet $E_{cin} = qV$





- Sistema de focalização
 - Lentes eletrostáticas

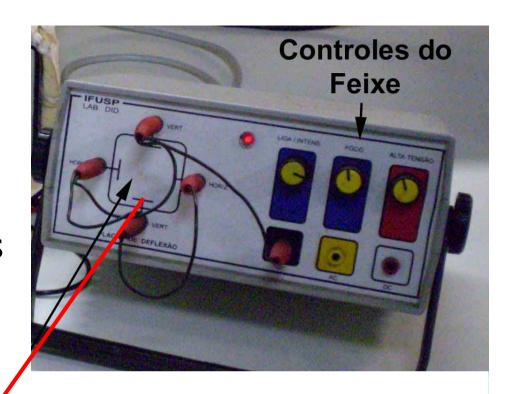


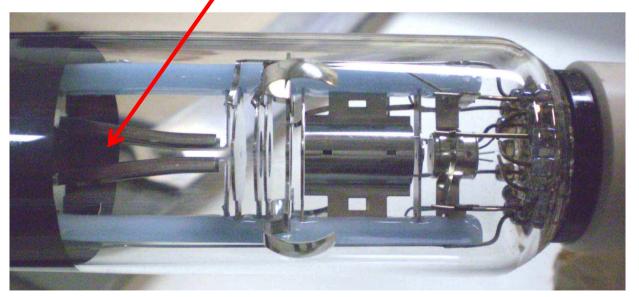


 Controle das tensões nas placas

• Horizontais e verticais

• Fonte externa



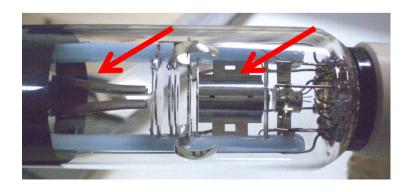


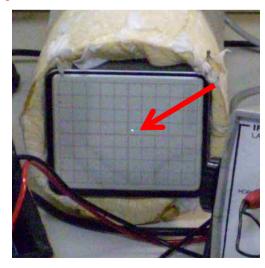
Medidas que podemos efetuar

- Quais a grandezas que temos controle e que podemos medir?
 - Tensão de aceleração dos elétrons
 - Ou velocidade, facilmente calculada
 - Tensão entre as placas
 - Proporcional ao campo elétrico aplicado
- Quais as grandezas que podemos apenas medir?
 - Posição do feixe de elétrons na tela do TRC

Objetivos

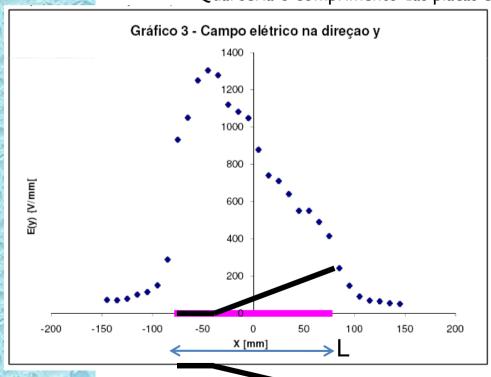
- Estudar como a deflexão (H, deslocamento do feixe) depende da tensão entre as placas (V_P) e da tensão de aceleração (V_{AC})
 - \circ Fazer gráfico de H em função de V_P para V_{AC} fixo
 - $\circ\,$ Fazer gráfico de H em função de $V_{\!AC}$ para V_P fixo
 - Tomar cuidado de escolher a variável fixa de modo a poder aproveitar toda a tela do osciloscópio

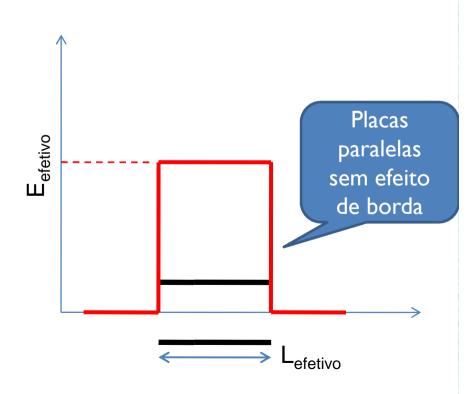




O que gostaríamos de fazer com estes dados?

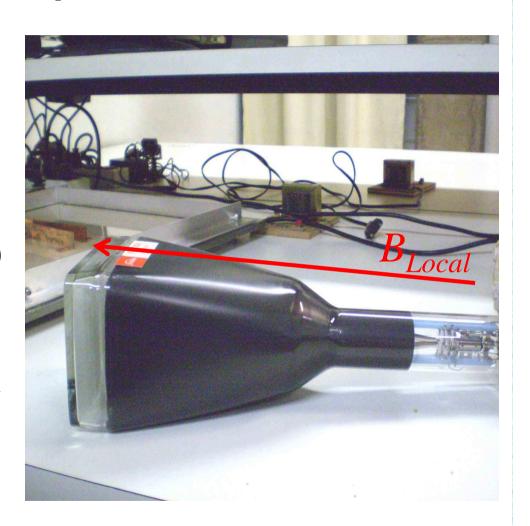
- Simplificar o problema
- Podemos transformar um problema de movimento complicado em algo simples?
 - A análise dos dados desta aula pode responder esta pergunta. Como?
 - Podemos descrever as nossas placas por um capacitor ideal?
 - · Qual seria o comprimento das placas e o campo elétrico efetivo? Pensem a respeito...





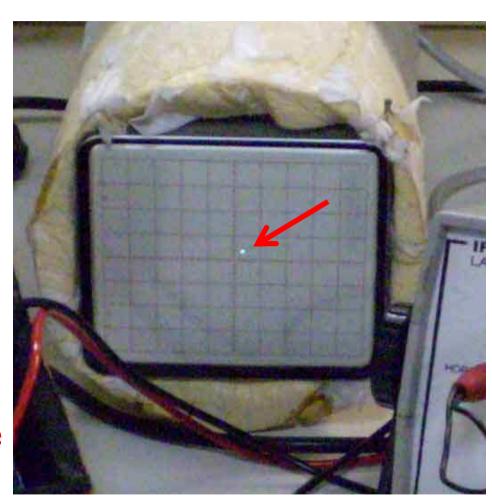
Um pouco do procedimento

- Cuidado I
 - O campo
 magnético local
 atua no feixe
 (Força magnética)
 - Devemos alinhar
 o TRC com o
 campo local (usar
 bússola)



Um pouco do procedimento

- Cuidado II
 - Ligar o TRC com ZERO volts entre as placas
 - Focalizar bem o feixe e definir a origem
 - Todas medidas em relação a este ponto



Atividades

- Fazer gráfico teórico das equipotenciais e do campo em função de x e comparar com os dados experimentais (no mesmo gráfico).
 - Planilha exemplo no site do curso
 - Ou pode usar QField ou FEMM
- Fazer as medidas do TRC e entregar:
 - \circ Gráfico de H em função de V_P para V_{AC} fixo
 - \circ Gráfico de H em função de V_{AC} para V_P fixo
 - Instruções de como montar o aparato experimental estão no site do curso
 - O nosso modelo ideal é compatível com os dados?
 Discuta