
3

The continuity and thermodynamic
energy equations

The continuity equations for air, individual gases, and aerosol particles, and the
thermodynamic energy equation are fundamental equations in atmospheric

models. Continuity equations are used to simulate changes in concentration or
mixing ratio of a variable over time and take account of transport, external sources,
and external sinks of the variable. The thermodynamic energy equation is used to
predict changes in temperature with time and takes account of transport, external
sources, and external sinks of energy. In this chapter, scalars, vectors, gradient
operators, local derivatives, and total derivatives are defined, and the continuity
and thermodynamic energy equations are derived.

3.1 DEFINITIONS

In this section, definitions relating to wind speed and direction and differentiation
are provided. The definitions will be used in subsequent sections to derive time-
dependent continuity equations.

3.1.1 Wind velocity

Scalars are variables, such as temperature, air pressure, and air mass, that have
magnitude but not direction. Vectors are variables, such as velocity, that have
magnitude and direction.

Winds are described by three parameters – velocity, the scalar components of
velocity, and speed. Velocity is a vector that quantifies the rate at which the position
of a body changes over time. Total and horizontal wind velocity vectors are defined
in Cartesian (rectangular) horizontal coordinates as

v = iu + jv + kw vh = iu + jv (3.1)

respectively, where i, j, and k are Cartesian-coordinate west–east, south–north, and
vertical unit vectors, respectively, and

u = dx
dt

v = dy
dt

w = dz
dt

(3.2)

are scalar components of velocity (scalar velocities) (m s−1). Scalar velocities have
magnitude only. When applied in (3.1), positive u, v, and w correspond to winds
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Figure 3.1 Zonally averaged west–east scalar velocities (m s−1) for (a) January
and (b) July. Data for the plots were compiled by Fleming et al. (1988).

moving from west to east, south to north, and lower to higher elevation, respec-
tively. The vertical scalar velocity in (3.2) is written in the altitude vertical coordi-
nate system. In this coordinate system (coordinate), tops and bottoms of horizontal
layers are defined by surfaces of constant altitude.

The magnitude of the wind is its speed. The total and horizontal wind speeds
are defined as

|v| =
√

u2 + v2 + w2 |vh| =
√

u2 + v2 (3.3)

respectively.
Wind direction is generally named for where a wind originates from. A westerly

wind, southwesterly wind, sea breeze, and mountain breeze originate from the west,
the southwest, the sea, and a mountain, respectively. A positive scalar velocity u
with no south–north component is a westerly wind. A positive scalar velocity v
with no west–east component is a southerly wind.

Air velocities vary in space and time. Figures 3.1(a) and (b) show global-scale
latitude–altitude contour plots of zonally averaged west–east scalar velocities for
January and July, respectively. The figures indicate that west–east winds in the
upper troposphere almost always originate from the west. The two peaks near
10 km in each figure correspond to subtropical jet streams. Near the surface at the
Equator and poles, winds originate from the east but are weak. Near the surface at
midlatitudes (30◦–60◦) in both hemispheres, winds originate from the west. In the
stratosphere, westerly wind speeds increase with height in the winter hemisphere
(Northern Hemisphere in January; Southern Hemisphere in July), forming polar
night jets near 60 km. Easterly wind speeds increase with increasing altitude in the
summer hemisphere. Winds above the surface are driven by pressure gradients, and
pressure gradients are driven by temperature gradients. Thus, strong winds aloft
indicate strong temperature and pressure gradients.
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3.1 Definitions

3.1.2 Time and spatial rates of change

The time rate of change of a variable, such as concentration, momentum, or tem-
perature, can be determined at a fixed location or in the frame of reference of the
variable as it moves. Suppose a plume, carrying a gas with number concentration
N = N(t, x[t]) (molec. cm−3), travels with the wind from fixed point A in the west
to fixed point B in the east. The time rate of change of N anywhere along the plume’s
trajectory is the total derivative, dN/dt. The total derivative can be expanded with
the chain rule in Cartesian coordinates as

dN
dt

= ∂N
∂t

dt
dt

+ ∂N
∂x

dx
dt

= ∂N
∂t

+ u
∂N
∂x

(3.4)

where ∂N/∂t is the time rate of change of concentration at fixed point A (local
derivative), and u∂N/∂x is the time rate of change of concentration in the plume
that results from a west–east scalar velocity transporting the plume.

The total derivative of a variable is nonzero when processes other than transport
affect the variable. In the case of gases, external processes include chemistry and
gas-to-particle conversion. If dN/dt = 0, the concentration of a gas does not change
as it travels with the wind.

The local derivative of a variable is the difference between the total derivative
and the rate of change of the variable due to transport. Thus, the local derivative is
affected by external processes plus transport. If ∂N/∂t = 0, the rate of production
(loss) of a variable due to external processes equals the rate of loss (production) of
the variable due to transport of a spatial gradient of the variable [u (∂N/∂x)].

Example 3.1

Suppose the time rate of change of concentration of a gas along the path of a
hot-air balloon traveling with the wind from east to west at u = −10 m s−1

is dN/dt = 108 molec. cm−3 s−1. If the west–east gradient in concentration is
∂N/∂x = 1010 molec. cm−3 km−1 (concentration increases from west to east),
determine the time rate of change of concentration at a fixed point A, which
the balloon passes over.

SOLUTION

Since u∂N/∂x = −108 molec. cm−3 s−1, (3.4) predicts (∂N/∂t)A ≈ 2 × 108

molec. cm−3 s−1. Thus, transport from the east (u∂N/∂x) accounts for one-half
of the production rate of N at point A, and transformations along the trajectory
(dN/dt) account for the other half.

A Lagrangian frame of reference is a frame of reference that moves relative to a
fixed coordinate system. An Eulerian frame of reference is a frame of reference in
a fixed coordinate system. The left side of (3.4) is written in terms of a Lagrangian
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frame of reference. The right side is written in terms of an Eulerian frame of refer-
ence. Generalizing (3.4) to three dimensions gives

dN
dt

= ∂N
∂t

+ u
∂N
∂x

+ v
∂N
∂y

+ w
∂N
∂z

(3.5)

3.1.3 Gradient operator

A gradient operator (also called a directional derivative, nabla operator, or del oper-
ator) is a vector operator of partial derivatives. The gradient operator in Cartesian-
altitude coordinates is

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
(3.6)

The dot product of the velocity vector with the gradient operator is a scalar
operator,

v ·∇ = (iu + jv + kw) ·
(

i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
= u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
(3.7)

where i · i = 1, j · j = 1, and k ·k = 1. Cross terms are zero (i · j = 0, i ·k = 0, and
j ·k = 0), since the unit vectors are orthogonal. The dot product of two vectors is
a scalar and symmetric (e.g., a ·v = v ·a). The dot product of a gradient operator
with a vector is a scalar operator but not symmetric (∇ ·v ̸= v ·∇). Instead,

∇ ·v =
(

i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
· (iu + jv + kw) = ∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
(3.8)

which is a scalar divergence. When concentration is multiplied by a divergence, the
result is the scalar

N(∇ ·v) = N
∂u
∂x

+ N
∂v
∂y

+ N
∂w
∂z

(3.9)

The gradient of a scalar, such as concentration, is a vector. For example,

∇N =
(

i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
N = i

∂N
∂x

+ j
∂N
∂y

+ k
∂N
∂z

(3.10)

Applying the dot product of velocity with the gradient operator to N gives the
scalar

(v ·∇)N =
(

u
∂

∂x
+ v

∂

∂y
+ w

∂

∂z

)
N = u

∂N
∂x

+ v
∂N
∂y

+ w
∂N
∂z

(3.11)

Substituting this result into the total-derivative equation (3.5) yields

dN
dt

= ∂N
∂t

+ (v ·∇)N (3.12)

64



3.2 Continuity equations

∆z

u1N1 u2N2

∆y

∆x

Figure 3.2 Example of mass con-
servation. The number of molecules
entering minus the number of
molecules leaving the box equals the
number of molecules accumulating
in the box.

Generalizing (3.12) for any variable gives the total derivative in Cartesian-altitude
coordinates as

d
dt

= ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
= ∂

∂t
+ v ·∇ (3.13)

3.2 CONTINUITY EQUATIONS

When air circulates in an enclosed volume, and no chemical or physical processes
affect it, the mass of the air, summed throughout the volume, is conserved. In
an atmospheric model divided into many grid cells (grid boxes), the mass of air
entering one cell minus the mass leaving the cell equals the final mass minus the
initial mass in the cell. The same is true for other atmospheric variables, such as
gas concentrations or energy, when only transport affects these variables.

Figure 3.2 shows a grid cell with dimensions "x, "y, "z (m). The west–east
scalar velocities entering and leaving the cell are u1 and u2 (m s−1), respectively.
Gas concentrations at the west and east boundaries of the cell are N1 and N2

(molec. cm−3), respectively. Mass fluxes of gas into the cell and out of the cell are
u1N1 and u2N2 (m molec. cm−3 s−1), respectively.

From the information given, the numbers of molecules entering, leaving, and
accumulating in the box during time period "t are u1N1"y"z"t, u2N2"y"z"t,
and

"N"x"y"z = u1N1"y"z"t − u2N2"y"z"t (3.14)

respectively. Dividing both sides of (3.14) by "t and by the box volume ("x"y"z)
gives

"N
"t

= −
(

u2N2 − u1N1

"x

)
(3.15)
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The continuity and thermodynamic energy equations

As "x → 0 and "t → 0, this equation approaches

∂N
∂t

= −∂ (uN)
∂x

(3.16)

which is the continuity equation for a gas affected by velocity in one direction. This
equation expands to three dimensions in Cartesian-altitude coordinates as

∂N
∂t

= −∂ (uN)
∂x

− ∂ (vN)
∂y

− ∂ (wN)
∂z

= −∇ · (vN) (3.17)

where vN = iuN + jvN + kwN. A similar equation can be written for air density.
Equation (3.17) states that the time rate of change of N at a fixed location equals
the negative of the local spatial gradient of the flux of N. Equation (3.17) is a
flux divergence form of the continuity equation so called because ∇ · (vN) is a
divergence of concentration.

Substituting

∇ · (vN) = N (∇ ·v) + (v ·∇)N (3.18)

into (3.17) and writing a similar equation for air density give the continuity equa-
tions for gas number concentration and total air mass density as

∂N
∂t

= −N (∇ ·v) − (v ·∇)N (3.19)

∂ρa

∂t
= −ρa(∇ ·v) − (v ·∇)ρa (3.20)

respectively. Substituting

(v ·∇)N = dN
dt

− ∂N
∂t

(3.21)

from (3.12) into (3.19) and (3.20) gives velocity divergence forms of the continuity
equations as

dN
dt

= −N (∇ ·v) (3.22)

dρa

dt
= −ρa (∇ ·v) (3.23)

where ∇ ·v is the divergence of velocity. The equations are also advective forms of
the continuity equation in that d/dt contains the advection term, v ·∇. The equa-
tions state that the change of a scalar variable over time in a moving parcel equals
the scalar variable multiplied by the negative local spatial gradient of velocity.

The gas number concentration N (molecules per cubic centimeter of air) is related
to the moist-air mass mixing ratio, q (kilograms per kilogram of moist air), of a
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3.2 Continuity equations

species with molecular weight m (g mol−1) by

N = Aρaq
m

(3.24)

where A is Avogadro’s number (molec. mol−1). Substituting (3.24) into (3.19) and
expanding give

q
(

∂ρa

∂t
+ ρa (∇ ·v) + (v ·∇)ρa

)
+ ρa

∂q
∂t

= −ρa(v ·∇)q (3.25)

Substituting the continuity equation for air from (3.20) into (3.25) gives the gas
continuity equation in units of the moist-air mass mixing ratio as

∂q
∂t

= −(v ·∇)q (3.26)

Equations (3.22) and (3.23) assume that air is compressible, meaning that total
volume of a parcel of air changes over time. Ocean water is considered incompress-
ible, meaning that the total volume of a parcel of ocean water does not change over
time. Thus,

∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

= 0 (3.27)

which is the continuity equation for an incompressible fluid. If (3.27) is not satis-
fied, a net divergence out of or convergence into a fluid volume occurs, causing the
volume to expand or contract, respectively. Equation (3.27) states that an incom-
pressible fluid is nondivergent. The equation can also be written as ∇ ·v = 0. Sub-
stituting water density (ρw) for air density and substituting ∇ ·v = 0 into (3.23)
give

dρw

dt
= 0 (3.28)

which states that the density of an incompressible fluid is constant along the motion
of the fluid. At a fixed point in the fluid, the density may change. Substituting water
density for air density and ∇ ·v = 0 into (3.20) give

∂ρw

∂t
= −(v ·∇)ρw (3.29)

which states that the change in water density at a fixed point in an incompressible
fluid is the negative product of velocity and the spatial gradient of density. In sum,
the density of an incompressible fluid, such as liquid water, can vary spatially, but
the total volume of such a fluid is constant over time. A fluid in which density varies
spatially throughout the fluid is inhomogeneous. Ocean water is inhomogeneous
and incompressible. A fluid in which density is always constant throughout a vol-
ume (∂ρw/∂t = 0) is homogeneous. Pure liquid water is a relatively homogeneous,
incompressible fluid. Air is an inhomogeneous and compressible fluid.
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3.3 EXPANDED CONTINUITY EQUATIONS

Equation (3.17) gave the continuity equation without molecular diffusion or exter-
nal source and sink terms. A more complete form of the continuity equation for a
gas is

∂N
∂t

= −∇ · (vN) + D∇2N +
Ne,t∑

n=1

Rn (3.30)

(e.g., Reynolds et al. 1973), where D is the molecular diffusion coefficient of the
gas (cm2 s−1), Ne,t is the number of external processes (e.g., chemistry, emission,
etc.) affecting the gas, and Rn is the time rate of change of trace-gas concentration
due to the nth external process affecting the gas (molec. cm−3 s−1). Molecular
diffusion is the movement of molecules due to their kinetic energy. As molecules
move, they collide with other molecules and are redirected along arbitrary paths.
A molecular diffusion coefficient quantifies the rate of molecular diffusion, and is
defined mathematically in Section 16.2.

The squared gradient in the molecular diffusion term of (3.30) expands to

∇2N = (∇ ·∇) N =
[(

i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
·

(
i

∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)]
N

= ∂2N
∂x2 + ∂2N

∂y2 + ∂2N
∂z2 (3.31)

Substituting (3.17) and (3.31) into (3.30) gives the continuity equation for a gas as

∂N
∂t

+ ∂(uN)
∂x

+ ∂(vN)
∂y

+ ∂(wN)
∂z

= D
(

∂2N
∂x2 + ∂2N

∂y2 + ∂2N
∂z2

)
+

Ne,t∑

n=1

Rn (3.32)

3.3.1 Time and grid volume averaging

The spatial domain in a model is divided into grid cells of finite size. Time is also
divided into time steps of finite size for advancing species concentrations, veloc-
ities, and other variables. Real atmospheric motions generally occur over spatial
scales much smaller than the resolution of model grid cells and over temporal scales
smaller than the resolution of model time steps. For example, a typical mesoscale
model might have horizontal resolution 5 km × 5 km, vertical resolution 50 m,
and time resolution 5 s. A global-scale model might have horizontal resolution
400 km × 400 km, vertical resolution 200 m, and time resolution 300 s. Fluctua-
tions in atmospheric motions due to eddies occur on smaller scales in both cases.
Eddies (Section 4.2.6; Section 8.4), for example, range in diameter from a couple
of millimeters to hundreds of meters and on time scales of seconds to hours.

Whereas many models do not resolve eddies, some do. These are discussed
in Section 8.4. To account for subgrid-scale disturbances in those models that
do not resolve eddies, a process called Reynolds averaging, named after Osborne
Reynolds, is used. Models that treat turbulence using Reynolds averaging are called
Reynolds-averaged models.
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3.3 Expanded continuity equations

During Reynolds averaging, each variable in (3.32) and in other model equations
is divided into an average and perturbation component. Such a division is referred
to as Reynolds decomposition. In the case of gases, gas number concentration is
decomposed as

N = N̄ + N′ (3.33)

where N is the actual (precise or instantaneous) concentration, N̄ is the average
concentration, and N′ is the instantaneous perturbation concentration. A precise
concentration occurs at a given instant and location within a grid cell. An average
concentration is obtained by integrating and averaging over a model time step and
grid-cell volume. Thus,

N̄ = 1
h"x"y"z

∫ t+h

t

{∫ x+"x

x

[∫ y+"y

y

(∫ z+"z

z
N dz

)
dy

]
dx

}
dt (3.34)

(e.g., Pielke 1984), where h is the time step, and "x, "y, "z are space increments,
shown in Fig. 3.2. The average concentrations are averages over one grid cell and
time step and differ for each grid cell and time step. Perturbation concentrations are
distributed on both sides of the average, so that the spatial and temporal average
of all perturbations is zero (N̄′ = 0), which is the Reynolds assumption.

Scalar and vector velocities can be decomposed in a similar manner. Thus, for
example,

u = ū + u′ v = v̄ + v′ w = w̄ + w′ (3.35)

where ū, v̄, and w̄ are the time- and volume-averaged scalar velocities, and u′, v′,
and w′ are perturbation scalar velocities, and

v = v̄ + v′ (3.36)

where v̄ = iū + jv̄ + kw̄ is a time- and volume-averaged velocity and v′ = iu′ + jv′ +
kw′ is a perturbation velocity. Advection is the mean horizontal velocity. Thus, ū
and v̄ are components of advection. Figure 3.3 shows an example of precise, mean,
and perturbation scalar velocities and trace-gas concentrations.

Unsteady flow occurs when v varies with time, but not necessarily randomly, at
a given location. Steady flow occurs when v is independent of time. Turbulent flow
is unpredictable flow in which v varies randomly with time at a location. Thus,
turbulent flow is unsteady, but unsteady flow is not necessarily turbulent. Laminar
flow is nonturbulent flow in which v may vary, but not randomly, with time at a
given location. In laminar flow, fluid particles travel along well-defined streamlines
and fluid layers flow independent of each other. Laminar flow can be steady or
unsteady. Nearly all flows in the atmosphere are turbulent.

Subgrid-scale effects are estimated by substituting decomposed variables into an
equation, then taking a time average and grid volume average of resulting terms.
Substituting (3.33) and (3.35) into the species continuity equation from (3.32) and
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N'

u'
u

N

u
_

N
_

Figure 3.3 Precise, mean, and perturbation components of scalar velocity
and gas concentration. The precise scalar velocity is denoted by u, the precise
gas concentration is denoted by N, time- and volume-averaged values are
denoted by an overbar, and perturbation components are denoted by a
prime. Each point on the horizontal axis is a perturbation at a given time
and location within a grid cell.

averaging terms over space and time (Reynolds averaging) give

[
∂(N̄ + N′)

∂t

]
+

[
∂(ū + u′)(N̄ + N′)

∂x

]
+

[
∂(v̄ + v′)(N̄ + N′)

∂y

]

+
[
∂(w̄ + w′)(N̄ + N′)

∂z

]
= D

{[
∂2(N̄ + N′)

∂x2

]
+

[
∂2(N̄ + N′)

∂y2

]

+
[
∂2(N̄ + N′)

∂z2

]}

+
Ne,t∑

n=1

Rn (3.37)

Since ∂(N̄ + N′)/∂t = ∂(N̄ + N′)/∂t, N̄ + N′ = ¯̄N + N̄′, ¯̄N = N̄, and N̄′ = 0, the
first term in (3.37) simplifies to

[
∂(N̄ + N′)

∂t

]
= ∂( ¯̄N + N̄′)

∂t
= ∂ N̄

∂t
(3.38)

Since u′N̄ = 0, ūN′ = 0, and ūN̄ = ūN̄, the second term simplifies to

[
∂(ū + u′)(N̄ + N′)

∂x

]
= ∂(ūN̄ + ūN′ + u′N̄ + u′N′)

∂x
= ∂(ūN̄ + u′N′)

∂x
(3.39)

The product u′N′ (m molec. cm−3 s−1) represents the west–east transport of N′ due
to subgrid-scale eddies. It is a kinematic turbulent flux in that its units are those
of concentration flux (kg [molec. cm−3] m−2 s−1) divided by air density (kg m−3).
When a variable or a flux is divided by the air density, it becomes a kinematic
variable or flux. The partial derivative ∂(u′N′)/∂x (molec. cm−3 s−1) is a turbulent
flux divergence term.
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3.3 Expanded continuity equations

Example 3.2

Suppose two gas concentrations (N1 = 8 and N2 = 4) and scalar velocities
(u1 = 3 and u2 = −1) are measured at different locations within a grid cell at
a given time. Estimate N̄, N′

1, N′
2, ū, u′

1, u′
2, u′N′, ūN̄, and uN. Ignore units.

SOLUTION

N̄ = (N1 + N2)/2 = 6 ū = (u1 + u2)/2 = 1
N′

1 = N1 − N̄ = 2 u′
1 = u1 − ū = 2

N′
2 = N2 − N̄ = −2 u′

2 = u2 − ū = −2

u′N′ = (u′
1N′

1 + u′
2N′

2)/2 = 4ūN̄ = 6

uN = ūN̄ + u′N′ = (u1N1 + u2N2)/2 = 10

Substituting (3.38), (3.39), and similar terms for other directions into (3.37)
gives

∂ N̄
∂t

+ ∂(ūN̄)
∂x

+ ∂(v̄N̄)
∂y

+ ∂(w̄N̄)
∂z

+ ∂u′N′

∂x
+ ∂v′N′

∂y
+ ∂w′N′

∂z

= D
(

∂2N̄
∂x2 + ∂2N̄

∂y2 + ∂2N̄
∂z2

)
+

Ne,t∑

n=1

R̄n (3.40)

For motions larger than the molecular scale, the molecular diffusion terms in (3.40)
are much smaller than are the turbulent flux divergence terms and can be removed.
Thus, (3.40) simplifies to

∂ N̄
∂t

+ ∂(ūN̄)
∂x

+ ∂(v̄N̄)
∂y

+ ∂(w̄N̄)
∂z

+ ∂u′N′

∂x
+ ∂v′N′

∂y
+ ∂w′N′

∂z
=

Ne,t∑

n=1

R̄n (3.41)

which compresses to the continuity equation for a gas,

∂ N̄
∂t

+ ∇ · (v̄N̄) + ∇ · (v′N′) =
Ne,t∑

n=1

R̄n (3.42)

An analogous equation for air density results in the continuity equation for air,

∂ρ̄a

∂t
+ ∇ · (vρa) + ∇ · (v′ρ ′

a) = 0 (3.43)

In (3.43), the external source and sink terms for air molecules are neglected because
they are small in comparison with the other terms.
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The continuity and thermodynamic energy equations

Equation (3.42) can be rederived in terms of moist-air mass mixing ratio. Adding
source and sink terms to (3.26) yields

∂q
∂t

+ v ·∇q =
Ne,t∑

n=1

Rn (3.44)

where Rn is now in kilograms per kilogram of moist air per second. Multiplying
the continuity equation for air from (3.20) by q, multiplying (3.44) by ρa, adding
the results, and compressing give

∂(ρaq)
∂t

+ ∇ · (ρavq) = ρa

Ne,t∑

n=1

Rn (3.45)

The moist-air mass mixing ratio, velocity, and density can be decomposed with
q = q̄ + q′, v = v̄ + v′, and ρa = ρ̄a + ρ ′

a, respectively. Density perturbations in the
atmosphere are relatively small; thus, ρ ′

a ≪ ρ̄a, and ρa ≈ ρ̄a. Substituting decom-
posed variable values into all but the R term in (3.45) gives

∂[ρ̄a(q̄ + q′)]
∂t

+ ∇ · [
ρ̄a(v̄ + v′)(q̄ + q′)

]
= ρ̄a

Ne,t∑

n=1

Rn (3.46)

Taking the time and grid volume average of this equation, eliminating zero-value
terms and removing unnecessary overbars results in

ρ̄a

[
∂q̄
∂t

+ (v̄ ·∇)q̄
]

+ q̄
[
∂ρ̄a

∂t
+ ∇ · (vρa)

]
+ ∇ · (ρ̄av′q′) = ρ̄a

Ne,t∑

n=1

R̄n (3.47)

Equation (3.47) can be simplified by first noting that, when ρ ′
a ≪ ρ̄a, (3.43) becomes

∂ρ̄a

∂t
+ ∇ · (vρa) = 0 (3.48)

Substituting this expression into (3.47) and dividing through by ρ̄a give

∂q̄
∂t

+ (v̄ ·∇)q̄ + 1
ρ̄a

∇ · (ρ̄av′q′) =
Ne,t∑

n=1

R̄n (3.49)

which is the gas continuity equation in units of the moist-air mass mixing ratio.
In (3.49), u′q′, v′q′, and w′q′ (m kg kg−1 s−1) are kinematic turbulent fluxes of

mixing ratio. Whereas models calculate spatially and temporally averaged values
(e.g., N̄, q̄, ρ̄a, ū), kinematic turbulent fluxes (e.g., u′N′) are parameterized. Some
parameterizations are discussed in Section 8.4. Here, a simple overview of K-theory
is given.

With K-theory (gradient transport theory), kinematic turbulent fluxes are
replaced with the product of a constant and the gradient of the mean value of a fluc-
tuating variable (Calder 1949; Pasquill 1962; Monin and Yaglom 1971; Reynolds
et al. 1973; Stull 1988). This is convenient, because models predict mean quantities.
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3.3 Expanded continuity equations

Kinematic turbulent fluxes of gas concentration, for example, are parameterized
with

u′N′ = −Kh,xx
∂ N̄
∂x

v′N′ = −Kh,yy
∂ N̄
∂y

w′N′ = −Kh,zz
∂ N̄
∂z

(3.50)

where Kh,xx, Kh,yy, and Kh,zz (e.g., cm2 s−1) are eddy diffusion coefficients in the
x-, y-, and z-directions, respectively. The subscript h indicates that the eddy dif-
fusion coefficient for energy (eddy thermal diffusivity) is used. The eddy diffusion
coefficient for energy is used because the turbulent transport of a gas is similar to
that of energy. When turbulent transport of velocity is simulated, an eddy diffusion
coefficient for momentum (eddy viscosity) term is used. Eddy diffusion coefficients
for energy and momentum differ, but not by much. Eddy diffusion coefficients
represent an average diffusion coefficient for eddies of all sizes smaller than the
grid cell. Eddy diffusion coefficients are also called eddy transfer, eddy exchange,
turbulent transfer, and gradient transfer coefficients.

Eddy diffusion coefficients are parameterizations of subgrid scale transport of
energy and momentum. In the vertical, such transport is caused by mechanical
shear (mechanical turbulence) and/or buoyancy (thermal turbulence). Horizontal
wind shear creates eddies that increase in size when the wind flows over rough sur-
faces. Buoyancy creates instability, causing shear-induced eddies to become wider
and taller. Vertical motions in eddies transfer surface air upward and air aloft
downward. Eddies also exchange air horizontally.

Substituting (3.50) into (3.41) gives

∂ N̄
∂t

+ ∂(ūN̄)
∂x

+ ∂(v̄N̄)
∂y

+ ∂(w̄N̄)
∂z

= ∂

∂x

(
Kh,xx

∂ N̄
∂x

)
+ ∂

∂y

(
Kh,yy

∂ N̄
∂y

)
+ ∂

∂z

(
Kh,zz

∂ N̄
∂z

)
+

Ne,t∑

n=1

R̄n (3.51)

Compressing (3.51) and removing overbars for simplicity give the continuity equa-
tion for an individual gas in number concentration units and Cartesian-altitude
coordinates as

∂N
∂t

+ ∇ · (vN) = (∇ ·Kh∇) N +
Ne,t∑

n=1

Rn (3.52)

where

Kh =

⎡

⎣
Kh,xx 0 0

0 Kh,yy 0
0 0 Kh,zz

⎤

⎦ (3.53)
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is the eddy diffusion tensor for energy. The analogous continuity equation for an
individual gas in moist-air mass mixing ratio units is

∂q
∂t

+ (v ·∇)q = 1
ρa

(∇ ·ρaKh∇)q +
Ne,t∑

n=1

Rn (3.54)

The units of Rn differ in the two cases.

3.3.2 Continuity equation for air

External sources and sinks (Rn) are relatively small and can be ignored in the
continuity equation for air. For most modeling applications, the turbulent flux
divergence term in the equation can also be ignored because ρ ′

a ≪ ρ̄a. After remov-
ing overbars for convenience and making the above modifications, the continuity
equation for air in Cartesian-altitude coordinates reduces from (3.43) to

∂ρa

∂t
+ ∇ · (vρa) = 0 (3.55)

3.3.3 Gas continuity equation

The continuity equations for trace gases and particles include several external
source and sink terms. Gases enter the atmosphere from surface and elevated
sources by emission. They are removed onto water, soil, foliage, roads, buildings,
cars, and other surfaces by dry deposition. In many cases, gases are swept out of
the atmosphere by falling raindrops during washout. Gases react chemically with
each other and are dissociated by solar radiation during photochemistry. Some
gases aggregate to form new particles during homogeneous nucleation or aggre-
gate on existing particle surfaces during heterogeneous nucleation. Once a surface
has nucleated, gas molecules may diffuse to and condense as a liquid or deposit as
a solid on the surface. Liquid material may also evaporate or solid material may
sublimate to the gas phase. A gas may also dissolve in liquid water on the surface
of a particle. Dissolved gases may evaporate. Finally, a gas may react chemically
on the surface of a particle during heterogeneous chemistry.

A form of the continuity equation for a gas q that accounts for the processes
discussed above is

∂Nq

∂t
+ ∇ · (vNq) = (∇ ·Kh∇)Nq

+ Remisg + Rdepg + Rwashg + Rchemg

+ Rnucg + Rc/eg + Rdp/sg + Rds/eg + Rhrg (3.56)
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3.3 Expanded continuity equations

where

Remisg = rate of surface or elevated emission
Rdepg = rate of dry deposition to the ground
Rwashg= rate of washout to the ground or from one altitude to another
Rchemg= rate of photochemical production or loss
Rnucg = rate of gas loss due to homogeneous or heterogeneous nucleation
Rc/eg = rate of gas loss (production) due to condensation (evaporation)
Rdp/sg = rate of gas loss (production) due to depositional growth (sublimation)
Rds/eg = rate of gas loss (production) due to dissolutional growth (evaporation)
Rhrg = rate of gas loss (production) due to heterogeneous reactions

All rates are expressed in units of concentration per unit time (e.g., molec. cm−3

s−1).

3.3.4 Particle continuity equation

The continuity equation for particles is divided into two subequations. One is
for particle number concentration, and the other is for particle volume compo-
nent concentration. Particles contain anywhere from one to hundreds of com-
ponents. The volume of each component varies over time due to physical and
chemical processes. If the total volume of one particle in a size bin i is denoted
by υi (cm3/particle), the volume of component q within that particle is υq,i .
Thus, υq,i gives information about a component in a single particle of a given
size. A variable giving information about that component summed over all par-
ticles of the same size, is more relevant. Such a parameter is volume concentra-
tion (cubic centimeters of the component per cubic centimeter of air), defined
as

vq,i = niυq,i (3.57)

where ni is the number concentration of particles of size i (particles per cubic
centimeter of air). If two of the three variables in (3.57) are predicted numerically,
the third can be found from the equation. Typically, volume concentration and
number concentration are predicted numerically. They are found from separate
continuity equations, because different external sources and sinks affect the number
and volume concentrations.

The continuity equation for the number concentration of particles of size i is

∂ni

∂t
+ ∇ · (vni ) = (∇ ·Kh∇) ni + Remisn + Rdepn + Rsedn

+ Rwashn + Rnucn + Rcoagn (3.58)

75



The continuity and thermodynamic energy equations

where

Remisn = rate of surface or elevated emission
Rdepn = rate of particle dry deposition to the surface
Rsedn = rate of sedimentation to the surface or between layers
Rwashn= rate of washout to the surface or from one altitude down to another
Rnucn = rate of production of new particles due to homogeneous nucleation
Rcoagn = rate of coagulation of number concentration

All rates are in units of particles cm−3 s−1. Sources and sinks that affect particle
number concentration include emission, dry deposition, sedimentation, washout,
homogeneous nucleation, and coagulation. Sedimentation occurs when particles
fall through the atmosphere due to their mass. Sedimentation by gases is negligible
because gas molecules have extremely small masses. Particle dry deposition occurs
when particles diffuse to or otherwise impact a surface by any transport process.
Particle washout occurs when rain sweeps particles in its path to lower altitudes or
the surface. Homogeneous nucleation is a source of new particles. Heterogeneous
nucleation does not produce new particles but allows growth to proceed on existing
particles. Coagulation occurs when two particles collide and stick to form a single,
larger particle.

The continuity equation for the volume concentration of component q in parti-
cles of size i is

∂vq,i

∂t
+ ∇ · (vvq,i ) = (∇ ·Kh∇) vq,i

+ Remisv + Rdepv + Rsedv + Rwashv + Rnucv + Rcoagv

+ Rc/ev + Rdp/sv + Rds/ev + Reqv + Raqv + Rhrv (3.59)

where

Remisv = rate of surface or elevated emission
Rdepv = rate of dry deposition to the surface
Rsedv = rate of sedimentation to the surface or from one altitude to another
Rwashv= rate of washout to the surface or from one altitude to another
Rnucv = rate of change due to homogeneous or heterogeneous nucleation
Rcoagv = rate of change due to coagulation
Rc/ev = rate of change due to condensational growth (evaporation)
Rdp/sv = rate of change due to depositional growth (sublimation)
Rds/ev = rate of change due to dissolutional growth (evaporation)
Reqv = rate of change due to reversible chemical equilibrium reactions
Raqv = rate of change due to irreversible aqueous chemical reactions
Rhrv = rate of change due to heterogeneous reactions on particle surfaces

Rates in this equation have units of cubic centimeters of component q per cubic
centimeter of air per second. Some processes, such as homogeneous nucleation
and coagulation, affect number and volume concentrations. Others, such as
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heterogeneous nucleation, condensation, deposition, dissolution, heterogeneous
reaction, chemical equilibrium and aqueous chemistry affect volume concentra-
tion but not number concentration.

3.3.5 Continuity equation for gas, liquid, and solid water

Water in the atmosphere appears as a gas, liquid, or solid. In a model, the total
water content is estimated as

qT = qv +
NB∑

i=1

(qL,i + qI,i) (3.60)

where NB is the number of particle size categories (bins), qv is the specific humidity
of water vapor (kilograms per kilogram of moist air), qL,i is the moist-air mass
mixing ratio of liquid water in a size bin, and qI,i is the moist-air mass mixing
ratio of ice in a size bin. Mass mixing ratios are determined from the continuity
equations for water vapor, liquid, and ice,

∂qv

∂t
+ (v ·∇)qv = 1

ρa
(∇ρaKh∇)qv

+ RemisV + RdepV + RchemV + Rc/eV + Rdp/sV (3.61)

∂qL,i

∂t
+ (v ·∇)qL,i = 1

ρa
(∇ρaKh∇)qL,i + RemisL + RdepL

+ RsedL + RcoagL + Rc/eL + Rf/mL (3.62)

∂qI,i

∂t
+ (v ·∇)qI,i = 1

ρa
(∇ρaKh∇)qI,i

+ RdepI + RsedI + RcoagI + Rf/mI + Rdp/sI (3.63)

where

Remis = rate of surface or elevated emission
Rdep = rate of dry deposition to the surface
Rsed = rate of sedimentation to the surface or from one altitude to another
Rchem= rate of photochemical production or loss
Rcoag = rate of liquid or ice production or loss in a size bin due to coagulation
Rc/e = rate of change due to condensational growth (evaporation)
Rdp/s = rate of change due to depositional growth (sublimation)
Rf/m = rate of change due to freezing (melting)

and the units of R are kilograms per kilogram of moist air per second.
Many meteorological models simulate liquid water and ice as bulk parame-

ters. In such cases, liquid water and ice are not separated into size categories,
and their number concentrations are not tracked. Instead, only the moist-air mass
mixing ratios of total liquid water and ice are predicted. Since particles are not size-
resolved in a bulk parameterization, some processes, such as coagulation, cannot
be treated adequately. When liquid and ice content are treated as bulk parameters,
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qT = qv + qL + qI, where the subscript i has been dropped because a bulk param-
eterization has no size resolution.

3.4 THERMODYNAMIC ENERGY EQUATION

Air temperature is affected by energy transfer and work. Energy transfer processes
include conduction, mechanical turbulence, thermal turbulence, advection, and
radiation, all introduced in Section 2.2. Energy is released to the air during conden-
sation of water vapor, deposition of water vapor, freezing of liquid water, exother-
mic chemical reactions, and radioactive decay. Energy is removed from the air upon
melting of ice, sublimation of ice, and evaporation of liquid water. Energy exchange
may also occur upon the change of state of substances other than water. Because
the quantities of nonwater substances changing state are relatively small, resulting
energy exchanges are small. Energy, like air density and species concentrations, is
conserved in a system.

An equation describing energy changes in the atmosphere can be derived by
combining the first law of thermodynamics with the continuity equation for air.
The first law of thermodynamics as expressed in (2.82) was dQ ≈ cp,d dTv − αa dpa.
Differentiating this equation with respect to time, substituting αa = 1/ρa, and rear-
ranging give the thermodynamic energy equation as

dTv

dt
≈ 1

cp,d

dQ
dt

+ 1
cp,dρa

dpa

dt
(3.64)

If the thermodynamic energy equation is written in terms of potential
virtual temperature, the last term in (3.64) can be eliminated. Differentiating
θv = Tv(1000/pa)κ with respect to time give

dθv

dt
= dTv

dt

(
1000

pa

)κ

+ Tvκ

(
1000

pa

)κ−1(
−1000

p2
a

)
dpa

dt
= θv

Tv

dTv

dt
− κθv

pa

dpa

dt
(3.65)

Substituting (3.65), κ = R′/cp,d, and pa = ρa R′Tv into (3.64), and expanding the
total derivative with (3.13) give the thermodynamic energy equation in terms of
potential virtual temperature as

dθv

dt
= ∂θv

∂t
+ (v ·∇)θv ≈ θv

cp,dTv

dQ
dt

(3.66)

Multiplying all terms in (3.66) by cp,dρa, multiplying all terms in the continuity
equation for air from (3.20) by cp,dθv, adding the two equations, and compressing
give

∂(cp,dρaθv)
∂t

+ ∇ · (vcp,dρaθv) ≈ ρa
θv

Tv

dQ
dt

(3.67)
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Substituting the energy density (J m−3), defined as E = cp,dρaθv, into (3.67) gives
the continuity equation for energy,

∂E
∂t

+ ∇ · (vE) ≈ ρa
θv

Tv

dQ
dt

(3.68)

This equation is similar to the continuity equations for air mass density or gas
number concentration. It states that the time rate of change of energy in a box
equals the energy flux in minus the energy flux out plus (minus) external sources
(sinks). Replacing N with E in Fig. 3.2 yields a diagram of energy fluxes into and
out of a hypothetical grid cell.

In a model, subgrid eddies affect energy transport. To account for such eddies,
variables in (3.67) can be decomposed as v = v̄ + v′, ρa = ρ̄a + ρ ′

a and θv = θ̄v + θ ′
v.

Since density perturbations are small (ρ ′
a ≪ ρ̄a), density is approximated as ρa ≈ ρ̄a.

Substituting velocity, density, and potential virtual temperature decompositions
into (3.67), setting the approximation to an equal sign for simplicity, and taking
the time- and grid-volume average of the result yield

cp,d

{
∂[ρ̄a(θ̄v + θ ′

v)]
∂t

}
+ cp,d∇ · [ρ̄a(v̄θ̄v + v̄θ ′

v + v′θ̄v + v′θ ′
v)] = ρ̄a

θv

Tv

dQ
dt

(3.69)

Eliminating zero-value time and spatial derivatives and unnecessary overbars
results in

∂(ρ̄aθ̄v)
∂t

+ ∇ · (ρ̄av̄θ̄v) + ∇ · (ρ̄av′θ ′
v) = ρ̄a

cp,d

θv

Tv

dQ
dt

(3.70)

which expands to

ρ̄a

[
∂θ̄v

∂t
+ (v̄ ·∇) θ̄v

]
+ θ̄v

[
∂ρ̄a

∂t
+ ∇ · (vρa)

]
+ ∇ · (ρ̄av′θ ′

v) = ρ̄a

cp,d

θv

Tv

dQ
dt

(3.71)

Substituting the continuity equation for air from (3.48) into (3.71) and dividing by
ρ̄a give the thermodynamic energy equation as

∂θ̄v

∂t
+ (v̄ ·∇) θ̄v + 1

ρ̄a
∇ · (ρ̄av′θ ′

v) = θv

cp,dTv

dQ
dt

(3.72)

The kinematic turbulent sensible-heat fluxes (v′θ ′
v) can be parameterized with

u′θ ′
v = −Kh,xx

∂θ̄v

∂x
v′θ ′

v = −Kh,yy
∂θ̄v

∂y
w′θ ′

v = −Kh,zz
∂θ̄v

∂z
(3.73)

where the eddy diffusion coefficients for energy are the same as those used in the
continuity equation for a trace species. Substituting v′θ ′

v = −Kh∇ θ̄v into (3.72) and
eliminating overbars for simplicity give

∂θv

∂t
+ (v ·∇)θv = 1

ρa
(∇ ·ρaKh∇)θv + θv

cp,dTv

dQ
dt

(3.74)
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The diabatic heating rate consists of the terms

dQ
dt

=
Ne,h∑

n=1

dQn

dt
=

dQc/e
dt

+
dQf/m

dt
+

dQdp/s
dt

+ dQsolar

dt
+ dQir

dt
(3.75)

where Ne,h is the number of diabatic energy sources and sinks. All Q’s are in joules
per kilogram. dQc/e/dt is the rate of energy release (absorption) due to condensation
(evaporation), dQf/m/dt is the rate of energy release (absorption) due to freezing
(melting), dQdp/s/dt is the rate of energy release (absorption) due to deposition
(sublimation), dQsolar/dt is the rate of solar heating, and dQir/dt is the rate of net
infrared heating (cooling). Substituting (3.75) into (3.74) gives the thermodynamic
energy equation as

∂θv

∂t
+ (v ·∇)θv = 1

ρa
(∇ ·ρaKh∇)θv + θv

cp,dTv

Ne,h∑

n=1

dQn

dt
(3.76)

3.5 SUMMARY

In this chapter, local and total derivatives were defined, and the continuity and ther-
modynamic energy equations were derived. Continuity equations included those
for air, trace gases, aerosol number concentration, and aerosol volume concentra-
tion. These equations treat subgrid eddy motions with kinematic turbulent flux
terms, which are generally parameterized. A common type of parameterization
is a K-theory parameterization. Equations described in this chapter are necessary
for simulating the transport and transformations of total air, gases, aerosol par-
ticles, and energy. An equation used for predicting wind speed and direction, the
momentum equation, is discussed next.

3.6 PROBLEMS

3.1 Expand the total derivative of the u-scalar velocity (i.e., substitute u for N
in (3.5)) when the air flow is (a) steady, (b) unsteady.

3.2 Explain why (3.17) differs from (3.26).
3.3 What is the purpose of Reynolds averaging?
3.4 If u = −5 m s−1 and v = +5 m s−1, write out the horizontal velocity vector,

determine the horizontal wind speed, and name the wind.
3.5 Assume that a grid cell has dimension "x = 5 km, "y = 4 km, and "z =

0.1 km and that the west, east, south, north, and lower scalar velocities are
u1 = +3, u2 = +4, v3 = −3, v4 = +2, and w5 = +0.2 m s−1. If the atmosphere
is incompressible, what is w at the top of the cell?

3.6 (a) A grid cell has dimensions "x = 5 km, "y = 4 km, and "z = 0.1 km.
Assume the gas concentration and scalar velocity at the west boundary
of the cell are N1 = 1×1011 molec. cm−3 and u1 = +7 m s−1, respectively,
and those at the east boundary of the cell are N2 = 5 × 1011 molec. cm−3

and u2 = +8 m s−1, respectively. (i) Assuming external sources and sinks
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and eddy diffusion are absent, estimate N at the cell center after 60 s if
the initial N is an average of the two boundary N-values and boundary
parameters remain constant. (ii) Calculate the time after the start at which
N at the cell center becomes zero.

(b) Assume that the gas concentration and scalar velocity at the south bound-
ary of the grid cell in part (a) are N3 = 1 × 1011 molec. cm−3 and v3 =
−2 m s−1, respectively, and those at the north boundary are N4 = 7 ×
1011 molec. cm−3 and v4 = +1 m s−1, respectively. Calculate (i) N at the
cell center after 60 s and (ii) the time after the start at which N at the
center becomes zero. Assume fluxes operate in four directions, and the
initial N at the center of the cell is the average of all four grid-boundary
N-values.

(c) Convert the gas number concentrations from part (a) (N1 and N2) to moist-
air mass mixing ratios, assuming that the gas is ozone, Tv = 298 K, and
pa = 1013 hPa.

(d) Re-solve parts (a) (i) and (a) (ii) with (3.26) using moist-air mass mixing
ratios instead of number concentration units. Assume that the west–east
velocity for this question is an average of the grid-cell boundary veloc-
ities. Convert the mass mixing ratio from the 60-s case back to number
concentration units. How does the result compare with that found in part
(a) (i)? If it differs, why does it differ?

3.7 A grid cell has dimensions "x = 5 km, "y = 4 km, and "z = 0.1 km. Assume
that the potential virtual temperature, pressure, and scalar velocity at the
west boundary of the grid cell are θv,1 = 302 K, pa,1 = 1004 hPa, and u1 = +7
m s−1, respectively, and those at the east boundary of the grid cell are θv,2 =
299 K, pa,2 = 1008 hPa, and u2 = +8 m s−1, respectively.
(a) Calculate the virtual temperature and air density at the west and east

boundaries of the grid cell.
(b) Calculate the energy density E at each boundary.
(c) Assuming diabatic energy sources and sinks and eddy diffusion are

absent, calculate the potential virtual temperature at the center of the
grid cell after 10 s.

3.7 COMPUTER PROGRAMMING PRACTICE

3.8 Assume that grid-cell size, boundary conditions, and N are initially the same
as in Problem 3.6(a). Write a computer script to calculate the final N at the
grid-cell center after a time step h. After each time step, set the east-boundary
gas concentration (N2) equal to the final concentration at the center of the
cell. Set h = 3 s, and run the program for a simulation period of one hour.
Plot the grid center concentration versus time.

3.9 Assume that grid-cell size, boundary conditions, and initial θv are the same
as in Problem 3.7. Write a computer script to calculate the final θv at the
cell center after a time step h. After each step, set θv,2 equal to θv at the cell
center. Set h = 3 s, and run the program for six hours. Plot θv versus time at
the cell center.
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