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Abstract

Based on the theory of networks, a general framework is developed to study
collective synchronization phenomena of extreme events in complex systems.
The method relies on observational time series encoding the variability of the
single parts of the system, and is intended to reveal emerging patterns of extreme
event synchronization on the macroscopic level. For this purpose, the time series
obtained from an interactive system under consideration are identified with
network nodes, and the possibly delayed and non-linear interdependence of
extreme events in different time series is represented by network links connecting
the nodes. In this way, the complex internal synchronization structure of the
system becomes accessible in terms of the topology of the network, which can be
analyzed by introducing suitable network measures. The methodology can thus
be seen as a tool for exploring empirical or simulation-derived data, and can form
the basis for the development of scientific hypotheses concerning the physical
mechanisms underlying the emergent synchronization patterns. But in addition
to the pure analysis of a given system, this tool can also be used for statistical
prediction of extreme events, given that the system exhibits sufficiently concise
synchronization patterns.

The methodology is applied to satellite-derived rainfall time series of high
spatiotemporal resolution in order to investigate the collective dynamics of
extreme rainfall events in South America. The purpose of this application is
threefold: First, it is shown how the methodology can be used for climatic analysis
by revealing climatological mechanism from the spatial patterns exhibited by
different network measures. This is partly intended to serve as a proof of concept,
but also adds new insights into the functioning of the climate system in situations
where traditional techniques to study spatial patterns of co-variability of climatic
observables are not applicable. This is the case for spatial characteristics of
extreme event synchronicity, which cannot be derived nor analyzed on the basis
of linear covariance measures. Second, networks encoding the synchronization
structure of extreme rainfall events are constructed in a way that resolves their
temporal order. These directed networks are used to assess the predictability
of extreme rainfall at the eastern slopes of the Andes, which are frequently
exposed to rainfall-induced natural hazards in form of floods and landslides.
By introducing the concept of network divergence, sink and source regions of
extreme events can be identified, allowing to track their directed synchronization
pathways through the network. On this basis, a climatological mechanism is
revealed that causes large rainfall clusters to propagate from southeastern South
America towards the Central Andes. A simple statistical forecast rule is finally
derived from these insights, predicting substantial fractions of extreme rainfall
events in the Central Andes. Third, the methodology and the insights developed
in the first two steps are used to evaluate the dynamical representation of extreme
events in different datasets, and in particular their dynamical implementation
in three state of the art climate models.
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Zusammenfassung

Basierend auf der Theorie von Netzwerken wird zunächst ein allgemeines Rah-
menwerk entwickelt, um kollektive Synchronisationsphänome von Extremereignis-
sen in komplexen Systemen zu studieren. Die Methode vergleicht die Variabilität
der einzelnen Teile des Systems auf Grundlage von Beobachtungszeitreihen mit
dem Ziel, emergente Synchronisationsmuster von Extremereignissen auf makro-
skopischer Ebene aufzudecken. Zu diesem Zweck werden die einzelnen Zeitreihen
eines interaktiven Systems mit den Knoten eines Netzwerks identifiziert und die
Abhängigkeiten zwischen diesen durch die Kanten des Netzwerks dargestellt,
wobei mögliche Nicht-Linearitäten sowie variierende Verzögerungen zwischen
Extremereignissen in verschiedenen Zeitreihen speziell berücksichtigt werden.
Die komplexe interne Synchronisationsstruktur des Systems wird so in Form
der Netzwerktopologie mathematisch zugänglich gemacht und kann durch die
Einführung geeigneter Netzwerkmaße analysiert werden. Die entwickelte Me-
thode stellt somit ein Werkzeug zur Untersuchung von empirischen oder aus
Simulationen gewonnenen Datensätzen dar und kann den Ausgangspunkt zur
Entwicklung wissenschaftlicher Hypothesen über die physikalischen Mechanis-
men, die den emergenten Synchronisationsmustern zu Grunde liegen, bilden.
Über die reine Analyse eines Systems hinaus kann diese Methodik jedoch auch
zur statistischen Vorhersage von Extremereignissen verwendet werden, sofern
ausreichend prägnante Synchronisationsmuster vorliegen.

Die Methode wird im Folgenden auf räumlich und zeitlich hochaufgelöste
Regendaten aus Satellitenmessungen angewendet, um die kollektive Dynamik
extremer Regenereignisse in Südamerika zu untersuchen. Diese Anwendung
verfolgt drei Ziele: Erstens wird gezeigt, wie die hier entwickelte Methode zur
klimatologischen Analyse verwendet werden kann. Dazu werden klimatologische
Mechanismen auf Grundlage der räumlichen Muster verschiedener Netzwerkmaße
aufgedeckt. Dies soll einerseits als Nachweis dazu dienen, dass die Methode ihren
Zweck erfüllt, trägt aber andererseits auch zum Verständnis des Klimasystems
in Situationen bei, in denen traditionelle Techniken zur Studie räumlicher Kova-
riabilitätsmuster klimatischer Observablen nicht anwendbar sind. Für räumliche
Charakteristika der Synchronisation extremer Ereignisse ist dies der Fall, da
diese auf Grundlage linearer Kovarianzmaße weder ableitbar noch analysierbar
sind. Zweitens werden Netzwerke konstruiert, die die Synchronisationsstruktur
extremer Regenereignisse unter Berücksichtigung ihrer zeitlichen Reihenfolge
kodieren. Diese gerichteten Netzwerke werden verwendet, um die Vorhersag-
barkeit extremer Regenereignisse an den Osthängen der Anden einzuschätzen,
welche häufig zu Fluten und Landrutschen in diesen Regionen führen. Durch
die Einführung des Konzeptes der Netzwerkdivergenz können Quellen und Sen-
ken von Extremereignissen identifiziert werden. Dies erlaubt es, die gerichteten
Netzwerkpfade, entlang derer Extremereignisse synchronisieren, nachzuverfolgen.
Auf dieser Grundlage wird ein klimatologischer Mechanismus entdeckt, der für
die Propagation von großen Regensystemen vom Südosten Südamerikas bis in
die Zentralanden verantwortlich ist. Aus diesen Erkenntnissen wird eine statisti-
sche Regel gewonnen, die beträchtliche Anteile der extremen Regenereignisse
in den Zentralanden vorhersagt. Drittens werden die bis dahin entwickelten
Methoden und gewonnenen Einsichten dazu verwendet, die Darstellung extre-
mer Regenereignisse in verschiedenen Datensätzen zu vergleichen. Insbesondere
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wird in diesem Kontext die Implementierung solcher Ereignisse in drei gängigen
Klimamodellen evaluiert.

viii



List of publications

This dissertation is partly based on the following publications. The identifiers given
below (e.g. P1) are cited in the text to highlight passages that are connected to these
studies.

P1 N. Boers, B. Bookhagen, N. Marwan, J. Kurths, J. Marengo, Complex networks
identify spatial patterns of extreme rainfall events of the South American Monsoon
System, Geophysical Research Letters 40, 4386–4392 (2013).

P2 N. Boers, A. Rheinwalt, B. Bookhagen, H.M.J. Barbosa, N. Marwan, J. Marengo,
J. Kurths, The South American Rainfall Dipole: A Complex Network Analysis of
Extreme Events , Geophysical Research Letters 41, 73977405 (2014).

P3 A. Rheinwalt, N. Boers, N. Marwan, J. Kurths, F. Gerstengarbe, P. Werner,
Non-Linear Time Series Analysis of Precipitation Events Using Regional Climate
Networks for the Region of Germany, Climate Dynamics (accepted).

P4 N. Boers, B. Bookhagen, N. Marwan, J. Kurths, Spatiotemporal Characteristics
and Synchronization of Extreme Rainfall in South America with Focus on the
Andes Mountain Range, Climate Dynamics (accepted).

P5 N. Boers, B. Bookhagen, H.M.J. Barbosa, N. Marwan, J. Kurths, J. Marengo,
Prediction of Extreme Floods in the Eastern Central Andes based on a Complex
Networks Approach, Nature Communications 5:5199 (2014).

P6 N. Boers, B. Bookhagen, H.M.J. Barbosa, N. Marwan, J. Kurths, J. Marengo,
Propagation of strong rainfall events from southeastern South America to the
Central Andes (in revision).

P7 N. Boers, B. Bookhagen, J. Marengo, N. Marwan, J. v. Storch, J. Kurths,
Extreme rainfall of the South American monsoon system: A dataset comparison
using complex networks, Journal of Climate 28:3, 1031-1056 (2015).

P8 N. Boers, R. Donner, B. Bookhagen, J. Kurths, Complex network analysis helps
to identify impacts of the El Niño Southern Oscillation on moisture divergence in
South America Climate Dynamics (accepted).

Berlin, May 29, 2015

ix





Acknowledgements

I am deeply grateful to Jürgen Kurths for supervising and promoting me in all aspects
of scientific life. Furthermore, I want to thank José Marengo for his great support, in
particular during my stay at the Centre for Earth System Research in Brazil. I am
very thankful to Bodo Bookhagen for all his efforts, for his patience, for his hospitality
in Santa Barbara, and in particular for helping me out whenever my very limited
knowledge of the geosciences did just not suffice to make sense of the plots. Seriously,
what would I have done! In addition, I am obliged to Norbert Marwan for his great
advices, and for having an answer to basically any question on time series analysis.

I am indebted to the Potsdam Institute for Climate Impact Research, the German
Research Foundation, and the International Research and Training Group “Dynamical
Phenomena in Complex Networks” for giving me the opportunity to make a living
from something that is most of the time a lot of fun.

Many thanks go to Bedartha Goswami, Aljoscha Rheinwalt, and Dominik Traxl. For
countless discussions, for the great times we had at conferences, for being extremely
critical at times, but most of all for their friendship. To be continued ... I am truly
looking forward to that!

Finally, I want to thank my family. Don’t get me started what for. They’re just
great!

xi





Contents

List of publications ix

Acknowledgements x

List of Figures xvii

List of Tables xxi

List of frequently used symbols and abbreviations 1

1. Introduction 3
1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2. Climatological Setting: The South American Monsoon System . . . . 6
1.3. Arrangement of this thesis . . . . . . . . . . . . . . . . . . . . . . . . 9

I. Theoretical Framework 11

2. Measures of Similarity 13
2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2. Event Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3. Comparison between Pearson’s correlation coefficient and Event Syn-

chronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3. Network Theory 19
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2. Mathematical representation of networks . . . . . . . . . . . . . . . . 19
3.3. Construction of climate networks from empirical data . . . . . . . . . 20
3.4. Complex network measures . . . . . . . . . . . . . . . . . . . . . . . 22
3.5. The influence of the spatial embedding . . . . . . . . . . . . . . . . . 26

II. Applications 29

4. Spatial Patterns of Extreme Rainfall Co-Variability 31
4.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3. Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

xiii



Contents

4.4. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.6. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5. Extreme Rainfall Associated with the South American Rainfall Dipole 43
5.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3. Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.5. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.6. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6. Spatiotemporal Connectivity of Extreme Rainfall in the Andes 55
6.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3. Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.4. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.5. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.6. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7. Prediction of Extreme Floods in the Eastern Central Andes 75
7.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.3. Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.4. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.5. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.6. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8. Dataset and Model Intercomparison 87
8.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.3. Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.4. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.5. Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9. Impacts of the El Niño Southern Oscillation on Extreme Moisture Diver-
gence 119
9.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
9.2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

xiv



Contents

9.3. Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
9.4. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
9.5. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
9.6. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
9.7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

10.Conclusion 143
10.1. Contributions of this thesis . . . . . . . . . . . . . . . . . . . . . . . 143
10.2. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Appendix 148

A. Additional figures for chapter 4 151

B. Additional figures for chapter 5 163

C. Additional figures for chapter 6 167

D. Additional figures for chapter 7 171

Bibliography 187

xv





List of Figures

1.1. Topography of South America and key features of the South American
monsoon system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2. Second EOF of daily rainfall during the monsoon system. . . . . . . 7
1.3. The Influence of ENSO on monthly rainfall in South America. . . . . 8

2.1. Influence of the event rates on the outcome of Event Synchronization. 17
2.2. Comparison of Pearson’s correlation coefficient and Event Synchro-

nization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1. Exemplary visualization of a climate network derived from rainfall
data over South America. . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2. Artificial example network demonstrating the network measures be-
tweenness centrality, clustering coefficient, mean geographical distance,
and long-ranged directedness . . . . . . . . . . . . . . . . . . . . . . 25

4.1. The South American monsoon system and rainfall climatology for the
monsoon season. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2. The influence of the spatial embedding on the spatial distribution of
various network measures. . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3. Complex Network measures reveal key features of the South American
monsoon system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4. Difference between long-ranged directedness for rainfall events above
the 95th and 90th percentiles. . . . . . . . . . . . . . . . . . . . . . . 39

5.1. Topography and time series of the number of extreme events in the
two study regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2. Composites and anomalies of rainfall, geopotential height, and wind
for the two phases of the South American rainfall dipole. . . . . . . . 48

5.3. Network measures degree (DR) and directionality (DR) for the two
phases of the South American rainfall dipole. . . . . . . . . . . . . . 49

5.4. Difference between Degree fields for the two phases of the South
American rainfall dipole. . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.1. Geographical and hydrological setting. . . . . . . . . . . . . . . . . . 57
6.2. Mean, median, and 90th percentiles of rainfall distributions. . . . . . 62
6.3. Number of events of the four types LSE, LLE, SEE, and SLE defined

in the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xvii



List of Figures

6.4. Total fraction of total DJF rainfall accounted for by the four types of
events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.5. Fraction of total DJF rainfall accounted for by each burst of the four
types of events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.6. 90th percentiles of rainfall cluster sizes. . . . . . . . . . . . . . . . . . 68
6.7. Regional Connectivity of the Altiplano-Puna Plateau. . . . . . . . . 69
6.8. Regional Connectivity of the main catchments at the Andean foothills. 70

7.1. Topographical and Climatological Setting. . . . . . . . . . . . . . . . 79
7.2. Network divergence, Regional Connectivity of southeastern South

America (SESA), as well as extreme event propagation from SESA to
the eastern Central Andes. . . . . . . . . . . . . . . . . . . . . . . . . 81

7.3. Atmospheric conditions for propagation and non-propagation times. 82

8.1. Topography of South America and key features of the South American
Monsoon System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.2. Mean daily rainfall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.3. 90th percentiles of daily rainfall. . . . . . . . . . . . . . . . . . . . . 95
8.4. 95th percentiles of daily rainfall. . . . . . . . . . . . . . . . . . . . . 96
8.5. Fraction of total DJF rainfall contributed by events above the 90th

percentile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.6. Difference between 90th and the 50th percentiles. . . . . . . . . . . . 99
8.7. Difference between 95th and the 90th percentiles. . . . . . . . . . . . 100
8.8. Rainfall distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.9. Degree for events above the 90th percentile. . . . . . . . . . . . . . . 104
8.10. Betweenness centrality for events above the 90th percentile. . . . . . 106
8.11. Clustering for events above the 90th percentile. . . . . . . . . . . . . 108
8.12. Regional Connectivity of the central Amazon Basin. . . . . . . . . . 111
8.13. Regional Connectivity of southeastern South America. . . . . . . . . 112
8.14. Regional Connectivity of the South Atlantic Convergence Zone. . . . 113
8.15. Differences of network measures for various datasets and event percentiles.115

9.1. Example of a daily time series of moisture divergence. . . . . . . . . 122
9.2. Composites of mean daily moisture divergence for different ENSO phases.126
9.3. Composites of 90th percentiles of moisture divergence for different

ENSO phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
9.4. Composites of 10th percentiles of moisture divergence for different

ENSO phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
9.5. Spearman’s rank correlation coefficient between the ENSO index MEI

and mean, 90th percentiles, and 10th percentiles of moisture divergence.130
9.6. L1-distance matrix L between the ranks of the local clustering coeffi-

cients (RLC) for events above the 90th percentile. . . . . . . . . . . . 131
9.7. L1-distance matrix L between the ranks of the local clustering coeffi-

cients (RLC) for events above the 90th percentile. . . . . . . . . . . . 132

xviii



List of Figures

9.8. ENSO index MEI and temporal evolution of the clustering coefficients
for events above the 90th percentile. . . . . . . . . . . . . . . . . . . 132

9.9. ENSO index MEI and temporal evolution of the clustering coefficients
for events below the 10th percentile. . . . . . . . . . . . . . . . . . . 133

9.10. Composites of the local clustering coefficient based on strong evapo-
transpiration events for different ENSO phases. . . . . . . . . . . . . 133

9.11. Composites of the average size of connected components of simultaneous
extremes based on strong evapotranspiration events for different ENSO
phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

9.12. Composites of mean daily moisture divergence for two different types
of El Niño events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

9.13. Composites of 90th percentiles of moisture divergence for two different
types of El Niño events. . . . . . . . . . . . . . . . . . . . . . . . . . 139

9.14. Composites of the local clustering coefficient for two different types of
El Niño events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.1. Rainfall Climatology for the fall season from March to May. . . . . . 152
A.2. Rainfall Climatology for the winter season from June to August. . . 153
A.3. Rainfall Climatology for the spring season from September to November.154
A.4. Network measures for events above the 90th percentile for the fall

season from March to May. . . . . . . . . . . . . . . . . . . . . . . . 155
A.5. Network measures for events above the 90th percentile for the winter

season from June to August. . . . . . . . . . . . . . . . . . . . . . . . 156
A.6. Network measures for events above the 90th percentile for the spring

season from September to November. . . . . . . . . . . . . . . . . . . 157
A.7. Network measures for events above the 95th percentile for the fall

season from March to May. . . . . . . . . . . . . . . . . . . . . . . . 158
A.8. Network measures for events above the 95th percentile for the winter

season from June to August. . . . . . . . . . . . . . . . . . . . . . . . 159
A.9. Network measures for events above the 95th percentile for the winter

season from June to August. . . . . . . . . . . . . . . . . . . . . . . . 160
A.10.Network measures for events above the 90th percentile for the spring

season from September to November. . . . . . . . . . . . . . . . . . . 161

B.1. Same as Figure 5.2 in chapter 5, but the isochrones (right column)
computed for τmax = 2 days. . . . . . . . . . . . . . . . . . . . . . . . 164

B.2. Same as Figure 5.2 in chapter 5, but the isochrones (right column)
computed for τmax = 1 day. . . . . . . . . . . . . . . . . . . . . . . . 165

C.1. Average number of 3-hourly events per burst of consecutive events of
the four different types. . . . . . . . . . . . . . . . . . . . . . . . . . 168

C.2. Average percentage of total DJF rainfall contributed to the catchments
C1 to C7 by each single burst of consecutive events of the four different
types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

xix



List of Figures

D.1. Linear trends for the magnitudes of rainfall extremes in the ECA. . . 171
D.2. Linear trends for the frequency of rainfall extremes in the ECA. . . . 172
D.3. Spatially resolved linear trends for the magnitudes of rainfall extremes

in South America. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
D.4. Network measure strength into and out of ECA. . . . . . . . . . . . . 174
D.5. Average spatial extent of area receiving extreme events during predic-

tion times and subsequent two days. . . . . . . . . . . . . . . . . . . 175
D.6. Relationship between elevation and relative fraction of extreme events

during prediction times in the ECA. . . . . . . . . . . . . . . . . . . 176
D.7. Same as Figure D.6, but resolved by ENSO phase. . . . . . . . . . . 177
D.8. Relative fraction of extreme events during prediction times and subse-

quent two days. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
D.9. Relative fraction of total DJF rainfall during prediction times and

subsequent two days. . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
D.10.Same as Figure D.8 but resolved by ENSO phase. . . . . . . . . . . . 180
D.11.Same as Figure D.9 but resolved by ENSO phase. . . . . . . . . . . . 180
D.12.Heidke-Skill-Score as a function of the threshold for the definition of

SESA times and the number of extreme events in the ECA. . . . . . 181
D.13.Same as Figure D.12 but resloved by ENSO phase. . . . . . . . . . . 182
D.14.Network divergence (left) and strength out of SESA (right) for the

95th to 99th percentiles as rainfall event thresholds. . . . . . . . . . 183
D.15.Comparison of the sum of strength into and out of SESA for five

different datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
D.16.Composites of rainfall and geopotential height and wind fields at

850mbar showing the propagation from SESA to ECA from 12 hours
before to 30 hours after rainfall peaks at SESA. . . . . . . . . . . . . 185

xx



List of Tables

7.1. Different conditions used to determine the climatic mechanism and to
formulate the forecast rule. . . . . . . . . . . . . . . . . . . . . . . . 82

7.2. Contingency table used for computing the Heidke-Skill-Score. . . . . 84
7.3. Specific values used to compute the Heidke-Skill-Score. . . . . . . . . 84

xxi





List of frequently used abbreviations

Climatological and geographical abbreviations

ECA eastern Central Andes
ITCZ Intertropical Convergence Zone
MCS mesoscale convective systems
SACZ South Atlantic Convergence Zone
SALLJ South American Low-Level Jet
SAMS South American Monsoon System
SEBRA southeastern Brazil
SESA southeastern South America

Mathematical symbols

S a general similarity matrix
A a general network adjacency matrix
ESsym symmetric version of the similarity measure Event Synchronization
ESdir directed version of the similarity measure Event Synchronization
DG network measure Degree
DR network measure Directionality
BC network measure Betweenness Centrality
MD network measure Mean Geographical Distance
CC network measure Clustering Coefficient
LD network measure Long-ranged Directedness
RC network measure Regional Connectivity
Sin, Sout directed network measures in-strength and out-strength
ΔS network divergence

1





Chapter 1.

Introduction

1.1. Motivation

The aim of this thesis is to deepen the understanding of the collective dynamics of
extreme rainfall events at different locations by analyzing observational time series
in a suitable way. For this purpose, a general methodological framework to analyze
the joint characteristics of synchronization of extreme events in different time series
will be developed on the basis of complex network theory. We will modify a non-
linear synchronization measure such that it meets our requirements and introduce
new ways to construct networks encoding the synchronization structure of extreme
events. Several new network measures will be introduced, which are designed to
quantify specific aspects of the network topology that are relevant for understanding
synchronization phenomena of extreme events.

The framework will be applied to spatially sampled rainfall data in South Amer-
ica, and we will show how it can be used to derive spatial patterns encoding the
synchronization structure of extreme events at different locations on the surface of
the earth. These spatial patterns will be used to draw inferences about the climatic
mechanisms governing the occurrence and synchronization of extreme events. As we
will show below, existing techniques are not suitable for this purpose due to problems
concerning the distributions of the time series and varying delays between events.
We will focus on three domains of application: climatic analysis of extreme rainfall,
prediction of extreme rainfall, and evaluation of climate models with respect to their
dynamical implementation of extreme rainfall.

The study of spatial patterns of co-variability of time series measured at different
locations constitutes an integral part of geoscientific research. In most situations,
such patterns are derived from observational data for exploratory purposes, providing
the basis for the subsequent identification of the geophysical mechanisms underlying
the interdependencies responsible for the patterns. In principle, this kind of analysis
can be divided into two subsequent steps: First, a suitable measure that quantifies
the co-variability of time series at different locations has to be determined. This
choice strongly depends on the data distribution and on the kind of dependency
that is assumed between the individual time series. Second, spatial patterns are
to be derived from these co-variabilities: Given a set of time series measured at N
different locations, one can compute the measure of co-variability for all possible pairs
of time series, resulting in a similarity matrix S of dimension N × N . However, in
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many applications, such a matrix is too complex in the sense that it provides more
information than can be directly conceived, calling for a dimension reduction to the
order of N . The resulting vector will contain a value for each of the N time series,
and exhibit the spatial patterns of interest. Of, course, the interpretation of these
patterns will depend greatly on the choice of the similarity measure as well as on the
specific method used for dimension reduction.

Probably the simplest example for this kind of analysis are so-called correlation
maps, which show the correlation1 values of one given reference time series to time
series measured at different locations (see Figure 1.3 for an example showing the
influence of ENSO on rainfall in South America). This approach corresponds to the
rather trivial dimension reduction by simply choosing one row or column from S.
While it is certainly useful in many cases, in many other situations, one might not be
interested in the co-variability of just one reference time series with a set of time series
at hand, but rather in the spatial characteristics of the joint co-variability of this set of
time series. A common tool for the latter purpose are empirical orthogonal functions
(EOFs), which have been applied for decades by meteorologist and climatologists
to study the spatial characteristics of co-variability of climatic observables. Such
EOFs are derived from principal component analysis (PCA) of the covariance matrix
computed for a given set of time series, which takes the role of the similarity matrix S.
The dimensionality reduction is achieved by spectral decomposition of S�S, and the
key assumption of this approach is that the relevant information of S is stored in its
eigenvectors (i.e., the EOFs, see Figure 1.2 for an example showing the second EOF
of daily rainfall of the South American monsoon). However, all approaches based on
PCA of the covariance matrix carry some technical caveats that have to be considered.
First, if the data are not normally distributed, the resulting EOFs will by construction
only be orthogonal, i.e. uncorrelated, but in general not independent (Dommenget and
Latif, 2002; Monahan et al., 2009). Thus, the spatial patterns exhibited by EOFs of
different order do in general not correspond to independent processes. This has to be
taken into account when interpreting the spatial patterns in a climatic context, since
one dynamical mechanism may be responsible for the variability patterns of several
EOFs. Second, only linear dependencies between the time series can be discovered on
the basis of the covariance matrix. This should be considered a too strong restriction
in most contexts, for most equations governing the dynamics underlying geophysical
data are highly non-linear. Third, as the approach is based on the covariance matrix,
it only captures information about the first two statistical moments of the data. In
particular, any information about interdependencies of extreme events in the different
time series is lost.

Of course, there exists a plethora of similarity measures and techniques to reduce
the dimensionality of the matrix S. However, for the purpose of this thesis, namely
the analysis of the spatial synchronization structure of extreme rainfall events, to our
knowledge no suitable methodology exists in the literature. We intend to fill this gap

1For now, think of Pearson’s correlation coefficient, or Spearman’s Rho, for instance.
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by representing the synchronization structure of extreme events by complex networks,
and analyzing it using the language of complex network theory.

During the past decade, complex network theory has proven to provide powerful
tools for analyzing the spatial characteristics of co-variability of climate time series
(e.g. Tsonis and Roebber, 2004; Tsonis et al., 2007; Yamasaki et al., 2008; Donges
et al., 2009b; Malik et al., 2012; Steinhaeuser et al., 2012; Berezin et al., 2012;
Ludescher et al., 2013), resulting in the popular climate network approach. We will
build upon these approaches, refine and further develop them in order to obtain a
methodology that is suitable for analyzing the synchronization structure of extreme
events in large sets of time series. For this purpose, new ways to construct networks
from the synchronization of extreme events will be introduced with special focus
on the statistical significance of the networks. Furthermore, several new measures
on undirected as well as directed and weighted networks will be introduced, which
are specifically designed to quantify the topological aspects of the networks that are
relevant for climatological applications.

In general terms, the methodology that will be developed in the following chapters
is based on the idea that relevant and important features or mechanisms of a given
complex system influence the way how extreme events in the time series of this
system synchronize. A network is constructed by representing strong and statistically
significant synchronizations by network links, and the topology of this network is
assumed to encode the influences of the driving features or mechanisms. By means
of suitable measures, it should then be (and is in fact, as we will show) possible
to extract this information from the network’s topology, and in this way infer the
underlying features and mechanisms from the time series. The methodology can
thus be understood as a data exploration tool that can be used to develop scientific
hypotheses about the mechanisms driving a given complex system under consideration.
Furthermore, in situations where information on the temporal order of events is
available, we will show how directed networks can be employed to statistically track
the propagation of these events through the network, which can in certain situations
be used for prediction of extreme events.

Specifically for the case of rainfall extremes, we assume that the mechanisms
underlying a climatic system like the South American monsoon influence the way
how extreme rainfall events synchronize at different locations. Spatially embedded
networks will be derived from the synchronization characteristics of extreme events at
different locations in space. Along the lines of the general approach, suitable network
measures will be introduced and interpreted in a climatic context in order to reveal
relevant climatic features underlying the monsoon system from the internal structure
of the networks. In the following chapters, we shall show how this can be used for
climatic analysis of extreme rainfall, but also for statistical prediction of these events
as well as for evaluating their implementation in climate models.
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ITCZ

SACZ

SALLJ

Amazon
Basin

SEBRA

SESA

Figure 1.1.: Topography of South America and key features of the South American monsoon
system, such as the Intertropical Convergence Zone (ITCZ), the South Atlantic
Convergence Zone (SACZ), the South American Low-Level Jet (SALLJ), as well as
the three regions SESA, SEBRA, and the Amazon Basin which are referred to in
the text.

1.2. Climatological Setting: The South American

Monsoon System

Rainfall in most parts of South America critically depends on moisture inflow from
the tropical Atlantic Ocean at low atmospheric levels. This inflow is provided all
year round by the trade winds, which transport large amounts of moisture along
the Intertropical Convergence Zone (ITCZ) towards the Amazon Basin (Figure 1.1).
During austral summer (December to February), differential heating between ocean
and land, as well as precipitation-induced latent heat release over the Amazon Basin,
substantially enhance the low-level flow from the tropical Atlantic Ocean towards
the continent (Zhou and Lau, 1998; Rodwell and Hoskins, 2001). Furthermore, the
southward displacement of the ITCZ during this time of the year leads to a complex
interplay between the strengthened low-level moisture inflow, the Andean topography,
and frontal systems originating from the southern tip of the continent. The climatic
system emerging from this interplay is commonly referred to as South American
Monsoon System (SAMS, (Vera et al., 2006; Marengo et al., 2012)).

Upon recycling large fractions of their moisture content through precipitation and
evapotranspiration over the Amazon Basin (Eltahir and Bras, 1993; Marengo, 2006),
the low-level winds are ultimately blocked by the Andes cordillera to the West. The
shape of the mountain range causes the flow to be redirected southward along the
slopes of the northern Central Andes, where they lead to high rainfall amounts due
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to orographic lifting (Bookhagen and Strecker, 2008).
There exists considerable variability in the direction and strength of the subse-

quent low-level flow to the subtropics, with typical exit regions ranging from central
Argentina to eastern Brazil. Two dominant circulation regimes have been identified
and extensively discussed in this context: A pronounced southward component of
the flow south of approximately 15◦S establishes the South American Low-Level
Jet (SALLJ, (Marengo et al., 2004)) and, in case of particularly strong southward
anomalies, the Chaco Jet (Salio et al., 2002; Saulo et al., 2004). These wind systems
east of the slopes of the Andes are associated with enhanced rainfall in southeastern
South America (SESA) (Liebmann et al., 2004), and specifically with the formation of
mesoscale convective systems (MCS, (Maddox, 1980; Nicolini et al., 2002; Salio et al.,
2007; Durkee and Mote, 2009)) in this region. These MCS contribute substantial
fractions of total seasonal precipitation in large parts of subtropical South America,
and in particular in SESA (Durkee et al., 2009). In contrast, if the flow exhibits
a pronounced eastward component, it transports moist air to the South Atlantic
Convergence Zone (SACZ, (Liebmann et al., 2004; Carvalho et al., 2004; Jorgetti
et al., 2013)), a convective band of precipitation extending from the central Amazon
to southeastern Brazil (SEBRA).

Figure 1.2.: Second empirical orthogonal function (EOF) computed from the covariance matrix
of daily rainfall data for the core monsoon season from December to February
(DJF) for the time period from 1998 to 2012. Rainfall data were obtained from the
gauge-calibrated satellite product TRMM 3B42 V7 (Huffman et al., 2007).

The alternation between these two regimes, with enhanced rainfall in SESA when
rainfall in SEBRA is suppressed and vice versa, is commonly called the South American
rainfall dipole, and constitutes the dominant pattern of intra-seasonal variability of
the SAMS (Nogués-Paegle and Mo, 1997; Carvalho et al., 2002; Liebmann et al., 2004;
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Figure 1.3.: Spearman’s Rho between the El Niño Southern Oscillation Index MEI (Wolter and
Timlin, 1993) and monthly anomalies of rainfall over South America for the time
period from 1998 to 2011. Rainfall data were obtained from the gauge-calibrated
satellite product TRMM 3B42 V7 (Huffman et al., 2007).

Vera et al., 2006). The inverse co-variability of rainfall in these two regions can be
easily observed using EOFs of daily rainfall during the monsoon season (see Figure 1.2).
The oscillation between these regimes is related to frontal systems approaching from
southern Argentina, caused by Rossby waves in the polar jet streams. The associated
low-pressure systems interact with the tropical low-level circulation and force the flow
of warm and moist tropical air masses along their isobars to the subtropics (Liebmann
et al., 1999; Siqueira and Machado, 2004). The onset of the monsoon is related to
these frontal systems becoming stationary over SEBRA, and thereby establishing the
SACZ (Nieto-Ferreira et al., 2011).

The El Niño Southern Oscillation (ENSO) strongly influences the climate of South
America (Vera et al., 2006; Marengo et al., 2012). In particular, rainfall in large
parts of South America shows strong dependencies on ENSO variability (Barros et al.,
2008; Grimm and Tedeschi, 2009; Bookhagen and Strecker, 2010; Tedeschi et al.,
2013). For example, monthly rainfall anomalies in eastern tropical South America
are negatively correlated with the multivariate ENSO index MEI (Wolter and Timlin,
1993), while monthly rainfall anomalies in SESA are positively correlated (Figure 1.3).
Therefore, during warm ENSO conditions (i.e., El Niño phases), rainfall in eastern
tropical South America can be expected to be suppressed, while rainfall in SESA is
typically enhanced. The latter fact is associated with a strengthening of the SALLJ
during warm ENSO episodes (Silva et al., 2009).
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1.3. Arrangement of this thesis

According to the general rationale outlined above, this thesis is organized as follows.
In chapter 2, possible measures of similarity to quantify the degree of co-variability
are discussed, and it is argued why Event Synchronization provides the most suitable
starting point to analyze the synchronization of extreme events. Several modifications
will be described in this chapter, and the question of how to determine statistical
significance will be be addressed in this chapter.

In chapter 3, we introduce the relevant elements of complex network theory. It
will be described how networks are constructed from the values provided by the
similarity measure, and existing as well as new network measures will be introduced.
Furthermore, caveats with spatially embedded networks will be discussed, and a
method to overcome these problems will be introduced.

A first application of the methodology to daily rainfall data is presented in chapter
4. It will be shown how suitable measures on undirected and unweighted networks
reveal the key features of the SAMS. This chapter mainly serves as a proof of concept
for the methodology, as the obtained findings are consistent with existing results on
this well-known climate system.

Due to a missing theoretical framework, the aforementioned rainfall dipole between
SESA and SEBRA could so far only be analyzed with respect to mean conditions, but
not specifically with respect to its role concerning the dynamics of extreme events.
In chapter 5, by constructing networks separately for the two phases, we will show
how the synchronization pathways of extreme events differ among the two regimes.
Furthermore, evidence is provided in this chapter that the rainfall dipole is only the
most pronounced mode of an oscillation that extends over the entire South American
continent.

In chapter 6, we shall derive directed networks of extreme event synchronization in
order to reveal the geographical origins of spatially extensive, long-lasting rainfall
clusters over the main catchments along the eastern slopes of the Andes. By revealing
such teleconnections of extreme rainfall events, insights into their functioning and
the responsible climatic processes are obtained, but also the potential predictability
of these events is assessed.

Using directed and weighted networks, we shall proceed to establish a general
framework for the prediction of extreme events in complex systems in chapter 7.
Applying this methodology to three-hourly rainfall data reveals that, under specific
atmospheric conditions, extreme rainfall events propagate from SESA toward the
Central Andes, where they are likely to lead to severe floods and landslides. We will
show how a simple forecast rule for these events can be formulated on the basis of
the general theoretical framework.

In chapter 8, several methodological concepts developed in the previous chapters
will be collected to perform an extensive evaluation of observational data and climate
models with respect to the representation of the static and dynamic properties
of extreme rainfall events. We will show that climate models, while performing
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reasonably well in reproducing average rainfall values, have substantial difficulties
with the dynamics of extreme events.

In chapter 9, we shall extend the methods developed in the previous chapters to a
dynamical analysis using a sliding window approach. We will combine the methods
derived to analyze the spatial synchronization structure of extreme events with
elements from pattern recognition theory and recurrence networks in order to analyze
impacts of ENSO on the clustering properties of strong rainfall and evapotranspiration
events over South America.
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Chapter 2.

Measures of Similarity

2.1. Introduction

The key idea of the climate network approach that will be presented in the next
chapter is to represent interdependencies between time series of climatic observables at
different locations by network links. Many different measures have been employed to
quantify these interdependencies, and in general terms we will refer to such measures
as similarity measures. In the following, we will show that none of the standard
measures fulfills all the requirements we desire to analyze the synchronization of
extreme events, and how the measure that satisfies most of the requirements has to
be modified to become perfectly suited for our purposes.

The probably most widely-used similarity measure is Pearson’s correlation coefficient
(PCC). For two time series x and y of length T with existing means x, y and standard
deviations σx, σy, it is defined as the bilinear form

PCC(x, y) := Cov(x, y)
σxσy

=
∑T

i=1(xi − x)(yi − y)√∑T
i=1(xi − x)2

√∑T
i=1(yi − y)2

(2.1)

and thus PCC(x, y) ∈ [−1, +1]∀x, y. This measure is well-suited to quantify linear
dependencies between x and y: Geometrically, PCC is the normalized scalar product
between the two vectors x and y, and PCC(x, y) = 1 or PCC(x, y) = −1 thus
implies that the two vectors can be written as linear combinations of each other, while
PCC(x, y) = 0 implies that they are perpendicular. However, this does not exclude
possible non-linear dependencies between x and y. Note that, even if x and y are
binary event time series, where an entry xi = 1 indicates an event at the corresponding
time, and an entry xi = 0 indicates no event, PCC can be applied to count the
normalized number of simultaneous events in x and y. The fact that PCC is restricted
to linear interrelations between x and y has motivated the introduction of many more
general similarity measures. For example, the non-parametric similarity measures
given by Spearman’s and Kendall’s rank correlation coefficients quantify general
monotonic dependencies between x and y, including non-linearities. Another example
of a non-linear similarity measure is Mutual Information, which quantifies the “joint
information” contained in x and y. Since many processes underlying the variability
and interdependency of climatic observables are known to be highly non-linear, a
suitable measure of similarity between rainfall event time series should be capable
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of accounting for non-linearities. However, another subtlety has to be addressed in
this context: There will typically be a temporal delay between events at different
locations, and this delay cannot be expected to be constant in time. For example,
think of a situation where rainfall clusters frequently propagate from the location
where time series x is measured to the location where time series y is measured. The
propagation of rainfall may be driven by low-level winds (e.g., at 850mb), which have
varying speeds. The delay between rainfall events in x and associated events in y thus
depends on these varying wind speeds and will vary in time itself. Delays between
x and y can be accounted for by shifting the time series x and y against each other
by prescribed time windows (the lead or lag), and then computing one of the above
similarity measures. However, in such a “lead-lag analysis”, only one single lead (or
lag) is provided for the pair (x, y), and assumed to be valid for the entire time range.

Therefore, we have to look for a non-linear similarity measure that is suitable for
binary data, provides a unique association between events, and allows for a dynamical
delay, i.e. varying time intervals between events of one time series and events of the
other time series. To our knowledge, Event Synchronization (ES), first introduced in
(Quian Quiroga et al., 2002), is the only measure which fulfills all these desiderata.
In the following section, we will first introduce the original version of this measure
and then introduce several modifications necessary to meet specific requirements
concerning the temporal order of events, as well as their distribution in the time
series.

2.2. Event Synchronization

The original version of ES is defined as follows (Quian Quiroga et al., 2002): Consider
a set of N time series {x1, . . . , xN }, each of length T , and let (xi, xj) denote a pair
of these time series. We define corresponding event series ei and ej as sequences
containing the time indices for which the values of xi and xj fulfill certain prescribed
conditions2. These sequences shall be ordered from lower to higher values. Consider
two events eμ

i and eν
j , with 0 ≤ μ ≤ li and 0 ≤ ν ≤ lj , where li (lj) denotes the total

number of events in time series xi (xj). In order to decide if the two events eμ
i and

eν
j can be uniquely assigned to each other, compute for dμ,ν

ij := eμ
i − eν

j the dynamical
delay

τ = min
({dμ,μ−1

ii , dμ,μ+1
ii , dν,ν−1

jj , dν,ν+1
jj }

2

)
. (2.2)

2There are many possible choices of a specific event definition. For example, events can be points
in time at which the value of the time series is above a global threshold, points in time for which
this value is above a given percentile of the distribution of the values of the time series, or points
in time for which the values of the time series drastically change. Since such a choice depends
on the specific research question and application, we will keep the definition of events in this
chapter as general as possible.
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In addition, a filter can be introduced by declaring a maximum delay τmax between
eμ

i and eν
j , which allows to analyze processes on different time scales. Put

Cμν
ij =

⎧⎪⎨
⎪⎩

1 if 0 < dμ,ν
ij ≤ τ and dμ,ν

ij ≤ τmax ,
1
2 if dμ,ν

ij = 0 ,

0 otherwise ,

(2.3)

and compute the normalized sum of uniquely associated events. The latter summation
can either be done in a symmetric fashion,

ESsym
ij :=

∑li
μ=1

∑lj
ν=1(Cμν

ij + Cμν
ji )√

lilj
, (2.4)

or in an anti-symmetric fashion

ESanti−sym
ij :=

∑li
μ=1

∑lj
ν=1(Cμν

ij − Cμν
ji )√

lilj
. (2.5)

While ESsym
ij ∈ [0, 1] gives the normalized total number of synchronous (i.e., uniquely

associable) events regardless of their temporal order, ESanti−sym
ij ∈ [−1, 1] yields the

normalized difference between synchronous events which occurred at j before they
occurred at i and events which occurred at i before they occurred at j.

For some applications, however, this specific definition of ESanti−sym
ij is not ap-

propriate. Given two time series xi and xj , measured at locations i and j, one may
be interested in the total number of synchronous events which first occurred at j
and thereafter at i, and, separately, in the total number of synchronous events which
first occurred at i and thereafter at j. For this reason, a modified version of directed
Event Synchronization will be introduced in the following, where the corresponding
sums will be stored separately instead of computing their difference. Furthermore, in
particular when applying ES to data with high temporal resolution, there may occur
situations where, typically, several events occur during consecutive time steps. Such
sequences of events in a row will be referred to as bursts. In such situations, only the
first will be considered as an event, weighted by the number of subsequent events,
which are themselves discarded from the summation. Thus, for each event eμ

i , there
is a weight wμ

i . We then put

W μν
ij =

{
min(wμ

i , wν
j ) if 0 < dμ,ν

ij ≤ τ and dμ,ν
ij ≤ τmax ,

0 otherwise ,
(2.6)

where it should be emphasized that events at the very same time do not contribute,
since they do not allow to determine the temporal order. The introduction of weights
wμ

i above assures that in situations where a burst in a given event series ej is followed
by a burst in another event series ei, but such that there is temporal overlap between
the two bursts, all events are still counted in a time-ordered manner. We define

15



Chapter 2. Measures of Similarity

directed Event Synchronization (see also P4 and P5) by

ESdir
ij :=

∑li
μ=1

∑lj
ν=1 W μν

ij√
lilj

, (2.7)

which is neither necessarily symmetric nor anti-symmetric: in general ESdir
ij �= ESdir

ji

and ESdir
ij �= −ESdir

ji .
We emphasize again that, by virtue of equation (2.2), none of these versions of ES

assumes temporal homogeneity between the time series because the possible delay
between events is dynamical (within the range of τmax), contrary to the static delay
in classical lead-lag correlation analysis.

2.2.1. The influence of the event rate

We define the event rate of a time series xi as the quotient of the number of events
li and the length T of xi: ri = li/T . Despite the normalization factor

√
lilj

−1 in
equations (2.4) and (2.5), the value of ES depends on event rates ri and rj if τmax is
finite (which will be the case for all practical applications), since the probability of
“random” synchronizations increases with increasing event rates (Figure 2.1). The
values of the matrix ES ∈ [0, 1]N×N computed for different pairs of event series are
thus not directly comparable if the event rate varies between the event series.

The most obvious way to nevertheless obtain comparable values of ES is to define
events in such a way that the event rate is equal for all event series under consideration.
However, some common event definitions do by construction not allow equal event rates
in all event series (e.g., if events are defined as time steps for which the corresponding
values are above a global threshold), thus demanding a more sophisticated solution to
this problem. A suitable approach in such situations is to compare the values of ES
on the level of their statistical significance, which itself depends on the event rates ri

and rj of the considered event series ei and ej . Appropriate statistical null models
for ES depend on the specific event definition and will be described in detail in the
corresponding following chapters. For now, we shall assume that the probability
distribution consistent with the null hypothesis is already obtained. Denoting the
corresponding probability density function by Hri,rj , statistical significance of a given
empirical value ESij can be estimated by the probability of obtaining a value larger
or equal to ESij given the null hypothesis:

P (ESij ≥ ESij) =
∫ 1

ESij

Hri,rj (s)ds (2.8)

In contrast to the values ESij themselves, their positions in the respective null
model distribution (i.e. P (ESij ≥ ESij)) are comparable among pairs of event series
with different event rates (ri, rj). Note that in this approach, one may omit the
normalization by

√
lilj in equations (2.4) and (2.5) altogether.
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Figure 2.1.: The influence of the event rates (r1 and r2) on the values of ES for finite τmax.
For each specific combination (ri, rj) (corresponding to a single point in the
x1 − x2−plane) we construct 1000 surrogate time series pairs (xi, xj) by uniformly
randomly placing events such that the resulting event rate is ri respectively rj , and
compute ESsym for all these pairs. The values shown in the figure are the average
values of ESsym over the 1000 values obtained for each set of surrogate pairs.

2.3. Comparison between Pearson’s correlation

coefficient and Event Synchronization

Lead-lag analysis on the basis of Pearson’s correlation coefficient (PCC) is the most
straightforward and most-often applied approach to derive directed network links
encoding the temporal order of interrelations between time series at different locations.
However, while certainly possible, lead-lag analysis using PCC is not the best-suited
approach for our purpose for the following reasons:

1. In the following chapters, we will investigate binary time series of extreme
rainfall events, for which only few of the entries will be 1, while the remaining entries
will be 0. We cannot expect that the delay between events in two different time series
will be constant in time. However, this is a necessary condition for a lead-lag analysis,
since it only provides one single lead (or lag), namely the length of the time window
by which one time series is shifted against the other.

2. The lead-lag analysis may not provide unique correlations, since there are often
several maxima of PCC over the range of leads and lags.

To exemplify the difference between the PCC lead-lag analysis and our approach,
we construct the following time series: Let x1 and x2 denote two event time series
of length t = 10000, with 100 independently and uniformly randomly chosen entries
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Chapter 2. Measures of Similarity

Figure 2.2.: Comparison of Pearson’s correlation coefficient (PCC) and Event Synchronization
(ES) for binary data with varying delay between events. The event time series x1
and x2 are independent, while x1 and x3 are dependent in the sense that events in
x3 follow events in x1 within 16 time steps.

equal to 1, and the remaining entries equal to 0 (the event rate corresponds to an
event threshold at the 99th percentile of all entries, which we will for example employ
in chapter 7).

Let furthermore x3 denote the time series obtained from x1 by shifting each entry 1
to the right by an integer uniformly randomly chosen from the set {1, . . . , 16}. Thus,
x3 is a time series for which all events follow events at x1 within a time window of
16 time steps, corresponding to τmax = 16. This maximum delay corresponds to
the choice in chapter 7. We can now compute ES(x1, x2), ES(x1, x3), as well as
maxi∈{1,...,16} PCC(x1(0, . . . , t−i), x2(i, . . . , t)), and maxi∈{1,...,16} PCC(x1(0, . . . , t−
i), x3(i, . . . , t)). Since x1 and x2 are independent, but x1 and x3 are strongly depen-
dent, we expect low correlation values between x1 and x2, but high correlation values
between x1 and x3. Repeating this procedure 1000 times, we obtain histograms of
the corresponding values of PCC and ES (Figure 2.2). It can be observed that the
values for ES(x1, x3) (around 0.75) are substantially higher than ES(x1, x2). In
contrast, this is not the case for PCC, for which values of PCC(x1, x3) are distributed
around 0.1. This example explains why, in contrast to the ES approach we chose,
employing a lead-lag analysis using PCC might produce misleading results, namely
small correlation values for strongly dependent time series.
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Chapter 3.

Network Theory

3.1. Introduction

In this chapter, we will present the elements of network theory which are relevant for
the applications presented in the following chapters. For a more complete and detailed
introduction to network theory, we refer to (Newman, 2010). The methodological
framework outlined in this chapter also provides the theoretical foundations of the
associated publications P1 to P8, and some of the following paragraphs closely
follow the corresponding sections in the respective publications. We will introduce
the standard notions and terminologies of network theory, including some standard
network measures, but also introduce several new network measures, which are defined
to quantify specific properties of the network topology that are relevant in the context
of extreme event synchronization.

3.2. Mathematical representation of networks

In mathematical graph theory, a graph G is defined as a set of vertices V together
with a set of edges E connecting the vertices (Newman, 2010):

G := (V, E)

Especially in physics, graphs are usually referred to as networks, vertices are often
referred to as nodes, and the edges are called links. Throughout this thesis, the
respective terms will be used as synonyms. A graph for which there are no edges from
a vertex to itself (so-called self-loops) and at most one edge between any two vertices
is called simple graph. A common representation of a simple graph is in terms of the
adjacency matrix:

Aij =
{

1 if the vertices i and j are connected by an edge,
0 otherwise.

(3.1)

An adjacency matrix defined in this way is symmetric, since the condition in (3.1) is
symmetric under exchange of i and j. In this sense, the corresponding network is
undirected. In many applications, however, it is beneficial to drop this property and
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allow for directionality of the links, resulting in a directed network, represented by a
non-symmetric adjacency matrix:

Aij =
{

1 if there exists an edge from vertex j to vertex i,
0 otherwise.

(3.2)

Furthermore, it is possible to assign weights wij to the links, which leads to a weighted
(and possibly still directed) network. This can be represented by an adjacency matrix
with entries equal to the weights: Aij = wij .

3.3. Construction of climate networks from empirical

data

Consider a set of N empirical time series {xi}1≤i≤N of some climatological variable
(e.g. temperature, pressure, or rainfall). Let further S = {Sij}1≤i,j≤N denote a
general, possibly non-symmetric similarity matrix for this set of time series, with
entries Sij equal to the values of the corresponding similarity measure S computed
for the pairs (xi, xj). Many different similarity measures have been employed for
the construction of networks from climate data (in the following called climate
networks). Many approaches are based on the covariance matrix of the set of time
series, which includes using Pearson’s correlation coefficient (Tsonis et al., 2006;
Tsonis and Swanson, 2008; Gozolchiani et al., 2008; Yamasaki et al., 2008; Donges
et al., 2009b; Gozolchiani et al., 2011)). However, the non-linearities immanent
in the climate system have motivated to also use similarity measures capturing
non-linear dependencies, such as Mutual Information (Donges et al., 2009a; Hlinka
et al., 2013; Hlinka et al., 2014). The right choice of a similarity measure ultimately
depends on the specific climatological variable under consideration, its distribution,
and on the dynamical processes underlying the dependencies of time series at different
locations. As described in the last chapter, the best-suited measure for analyzing
the synchronicity of extreme rainfall is Event Synchronization, which is employed
in all of the applications presented in the following chapters. But since the network
theoretic concepts described in the following do not depend on the specific similarity
measure, we will present them for a general similarity matrix S.

In general terms, a weighted and directed network can be derived from the matrix
S by identifying the time series with the network’s nodes and taking the similarity
matrix as the network’s adjacency matrix: Aij = Sij . If all entries Sij are non-zero,
this yields a fully connected network. A not fully connected network can be obtained
by specifying certain conditions on the entries Sij under which a link will be placed.
Formally denoting the set of possible values fulfilling these prescribed conditions on
Sij by Cij , this is captured by the adjacency matrix

Aij =
{

Sij if Sij ∈ Cij and i �= j,
0 otherwise ,

(3.3)
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where self-loops have been excluded. A corresponding unweighted network may
be derived by setting Aij = 1 instead of Aij = Sij in equation (3.3). A common
specification of the conditions C is to set network links only if the corresponding entries
of S are larger than a prescribed value. For example in (Tsonis et al., 2006; Tsonis
and Swanson, 2008), the entries of S are Pearson’s correlation coefficients between
the respective time series, and links are placed between nodes if the corresponding
absolute values of the entries Sij are above 0.5. A different approach was taken for
example in (Donges et al., 2009a; Donges et al., 2009b), where a link is placed between
two nodes if the corresponding entry of S (in these studies Pearson’s correlation
coefficient as well as Mutual Information) is above some p-th percentile threshold,
resulting in a network with prescribed link density ρ = (100 − p)%.

The prescribed conditions C should in general assure that only statistically signif-
icant values Sij are represented by network links (Paluš et al., 2011). In the two
approaches described in the last paragraph, the threshold or link density can be
adjusted in such a way. However, in the applications presented in chapters 5 and 6,
the event rates in each time series are not fixed, and thus a different way to estimate
statistical significance has to be found, which accounts for the specific distributions of
events in the time series. In such situations, the significance threshold corresponding
to a given confidence (e.g. a p-value of 0.05) depends on the event rates of the pair of
time series (i, j). Denoting the corresponding significance threshold by Tij , equation
(3.3) becomes

Aij =
{

Sij if Sij ∈ Cij and i �= j,
0 otherwise ,

(3.4)

which for the unweighted case translates to

Aij = Θ(Sij − Tij) − δij , (3.5)

where Θ denotes Heaviside’s function and Kronecker’s δ excludes self-loops. The
specific statistical null models used to derive Tij differ between the different applica-
tions and will be described in the corresponding chapters.

The climatological time series are derived from measurements at different locations,
and are ideally available on homogeneous geographical grids. In cases where a given
variable is only measured on the earth’s surface (such as rainfall), the resulting climate
network is then embedded on this two-dimensional surface (see Figure 3.1 for an
example over South America). Each network node representing a time series then
also corresponds to a grid cell, which can be uniquely referred to by a pair of angles
(λ, φ), with latitude λ ∈ (−90◦, 90◦) and longitude φ ∈ [0◦, 360◦).
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Figure 3.1.: Exemplary visualization of a climate network derived from rainfall data over South
America.

3.4. Complex network measures

3.4.1. Undirected and unweighted networks

On undirected and unweighted climate networks, we are going to apply the well-
established measures degree, betweenness centrality, and the local clustering coefficient
(Newman, 2010). Furthermore, we will introduce the new network measures mean
geographical distance, long-ranged directedness, regional connectivity, and directionality.
All these measures are local in the sense that they assign a value (or two values
for directionality) to each network node i ∈ {1, . . . , N} corresponding to a certain
geographical position. Here, we will give the mathematical definitions of these network
measures, while their respective climatological interpretations will be provided in
context with their application in the respective following chapters.

The degree (DG) of a node i is defined as the sum of network nodes j to which i is
connected to by network links:

DGi :=
N∑

j=1
Aij (3.6)

The measure betweenness centrality (BC) is based on the concept of shortest paths
in the network. A shortest path in a network between two nodes k and l is the shortest
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possible sequence of links that have to be passed to get from k to l. Betweenness
centrality is then defined as

BCi :=
∑

l<k �=i σkl(i)∑
l<k �=i σkl

(3.7)

where σkl denotes the total number of shortest network paths from k to l and σkl(i)
the number of shortest network paths from k to l which go through node i.

The clustering coefficient (CC) at a given node i is defined as the fraction of the
number of triangles and the number of pairs formed by network links connected to i:

CCi :=
∑

j<k AijAjkAik∑
j<k AijAik

(3.8)

We further define the mean geographical distance (MD, introduced in the associated
publication P1) at a network node i as the arithmetic mean of the geographical
distances of all network links attached to i:

MDi := 1
DGi

N∑
j=1

Aijdist(i, j) (3.9)

where dist(i, j) denotes the great-circle distance (measured in [km]) between the grid
points corresponding to nodes i and j.

We combine the three network measures BC, CC, and MD in the definition of
long-ranged directedness (LD, introduced in the associated publication P1). For this
purpose, we calculate the normalized ranks of BC, CC, and MD, denoted by NRBC,
NRCC, and NRMD, respectively, and put

LDi = 1
2NRBCi + 1

2NRMDi − NRCCi. (3.10)

In many cases, one may be interested in the connectivity of different geographical
regions in terms of their rainfall synchronicity. For this purpose, we define the measure
regional connectivity (RC, introduced in the associated publication P7) For each
node i, RC to a geographical region R is defined as the number of nodes (i.e., grid
cells) in R which are connected to i by a network link:

RCi(R) =
∑
j∈R

Aij (3.11)

In addition, we are interested in the directions along which extreme events oc-
cur synchronously. For this purpose, we employ the measure directionality (DR,
introduced in the associated publication P2). At each node i, this measure yields
two values: the dominant angle DRφ

i among all network links at that node and the
strength DRs

i corresponding to that angle, quantified as the number of links pointing
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in that direction: Let φij denote the angle between the meridian going through node
i and the straight line between node i and j. For undirected networks, all angles
φij are taken as modulo π, thus φij ∈ [0, π). In the following, we will therefore refer
to DRφ

i as an orientation rather than an angle. We first compute the frequency
distribution of all orientations ϕ of links at i:

Pi(ϕ) =
∑

j:φij∈(ϕ−ε,ϕ+ε)
Aij , (3.12)

where we will consider all orientations differing by less than ε = 0.02 as equal. DR is
then defined by the maximum of this distribution

DRs
i = max

ϕ∈[0,π)
Pi(ϕ) (3.13)

together with the corresponding orientation

DRφ
i = arg max

ϕ∈[0,π)
Pi(ϕ) . (3.14)

This measure can be visualized by streamlines which are, at each grid point, directed
along the orientation given by DR. The DR strength DRs

i will in chapter 5 be
indicated by the thickness of these streamlines. In order to be able to obtain a clear
interpretation, we will compute DR only for networks constructed for simultaneous
events (τmax = 0). By construction, extreme rainfall at grid points which lie on the
same streamline occur typically at the same time (subject to the temporal resolution
of the dataset). In this sense, they can be interpreted as isochrones.

3.4.2. Directed and weighted networks

The adjacency matrix A of a directed network is in general not symmetric. In this
thesis, we choose the convention that a non-zero entry Aij represents a link pointing
from node j to node i. The generalizations of degree on directed and weighted
networks are the in-strength Sin

i and out-strength Sout
i (Newman, 2010). At a network

node i, Sin
i is defined as the sum of weights assigned to links pointing to node i,

Sin
i :=

N∑
j=1

Aij , (3.15)

while Sout
i is defined as the sum of weights assigned to links pointing from node i:

Sout
i :=

N∑
j=1

Aji (3.16)

On the basis of these measures, we define the measure network divergence (ΔS,
introduced in the associated publication P5) as the difference of in-strength and
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A
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Figure 3.2.: An example network consisting of two subnetworks A and B is depicted. Nodes are
called connected if there exists a link between them. Between nodes 3 and 4, there
are two shortest paths, marked by the red and blue lines. Nodes 1 and 2 have high
BC, as they lie on all shortest paths between nodes in A and nodes in B. Node 3
has high MD, as the mean of the spatial lengths of its links is high. Node 4 will
have high CC, as many of its network neighbors are connected themselves. For
node 1, CC is higher than for node 2, resulting in lower LD for node 1 than for
node 2, although they have the same value of BC.

out-strength at each grid cell:

ΔSi := Sin
i − Sout

i . (3.17)

This measure provides us with the notion of sinks and sources of network strength,
and will be of great use for estimating the predictability of extreme events.

The measure regional connectivity introduced above can also be generalized to
directed and weighted networks. We define the strength into a geographical region R
from a node i as

Sin
i (R) = 1

|R|
∑
j∈R

Aji , (3.18)

and the strength out of a geographical region R to a node i as

Sout
i (R) = 1

|R|
∑
j∈R

Aij , (3.19)
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where |R| denotes the number of nodes contained in R. Note that this way, we defined
the strength out of a region R to a node i as the average in-strength of i, restricted
to the sources in R and vice versa. Thus, e.g., Sout

i (R) = 1 would imply perfect
connectivity from each node in R to i: there would be a link from each node in R to
i and each of these links would have weight equal to 1.

3.5. The influence of the spatial embedding

The network measures defined in the previous section (except DR) yield scalar values
for each node, and their distribution can be visualized by color-coded maps over the
geographical domain of interest. However, the spatial embedding of the networks, and
in particular the fact that they are confined to a given geographical domain, restricts
the possibilities to place network links, and thereby influences the spatial distribution
of network measure values (Gastner and Newman, 2006a; Gastner and Newman,
2006b; Barthelemy, 2011; Rheinwalt et al., 2012). This bias has to be considered
and taken care of before interpreting the spatial distribution of network measure
values in a climatological context.The effect of the spatial embedding on the network’s
topology is formally captured by the conditional probability of a link between two grid
points given their geographical distance. The corresponding probability distribution
P ((i, j) ∈ E|dist(i, j)) is estimated from the actual network. Here, E denotes the set
of links in the network. For linear network measures, the spatial distribution that
is expected from the spatial embedding alone can be analytically determined. For
example, the expected degree is given by

< DGi >=
N∑

j=1
P ((i, j) ∈ E|dist(i, j)) , (3.20)

and for the expected mean geographical distance we have

< MDi >= 1
DGi

N∑
j=1

dist(i, j)P ((i, j) ∈ E|dist(i, j)) . (3.21)

The expectation values for the other linear measures defined above, namely regional
connectivity, in- and out-strength, can be computed accordingly. For BC and CC, it
is due to their non-linearity not as easy to obtain the expectation value analytically.
Therefore, following (Rheinwalt et al., 2012), we numerically construct sufficient3

surrogate networks preserving the probability distribution P ((i, j) ∈ E|dist(i, j)),
compute the non-linear network measure for each surrogate network, and take the
mean over all surrogate values at each node.

3For the applications in this thesis, 1000 surrogates have proven to be sufficient, for the results do
not further change by increasing this number.
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In order to correct for these effects of the spatial embedding, we divide each grid
cell’s value of a given measure Mi by the value expected from the spatial embedding
< Mi >:

M corrected
i = Mi

< Mi >
(3.22)

For a spatial plot of uncorrected, expected, and corrected versions of the measures
BC, CC, and MD, we refer to Figure 4.2 in chapter 4.
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Chapter 4.

Spatial Patterns of Extreme Rainfall
Co-Variability

4.1. Summary

We apply symmetric Event Synchronization (ESsym) to daily rainfall events above
the 90th and above the 95th percentiles of the South American monsoon season.
Undirected Networks are constructed from the matrix ESsym and the classical
measures betweenness centrality (BC), mean geographical distance (MD), clustering
(CC), as well as the here introduced long-ranged directness (LD) are computed in
order to analyze the networks’ topology. Upon providing climatological interpretations
for these measures, we show that their spatial distributions reveal the key features of
the South American Monsoon System (SAMS), such as the main moisture pathways,
areas with frequent development of Mesoscale Convective Systems (MCS), and the
major convergence zones (ITCZ and SACZ). In addition, our results reveal substantial
differences between the spatial structures of rainfall synchronicity above the 90th
and above the 95th percentiles. Most notably, events above the 95th percentile
contribute stronger to MCS in the La Plata Basin. The purpose of this chapter is
twofold: Since the main features of the SAMS are relatively well-understood, the
results presented here can serve as a proof of concept, showing that the proposed
methodology yields results which are consistent with previous studies. In addition,
however, the presented results reveal the specific role which these climatic features
play for the spatial characteristics of extreme rainfall synchronicity, and – in this sense
– go beyond the hitherto known. This chapter is based on the associated publication
P1, and some of the following sections will closely follow the presentation in that
study. Supplementary figures for this chapter can be found in appendix A.

4.2. Introduction

In this chapter, we use ESsym and analyze extreme rainfall in the South American
Monsoon System (SAMS) by means of undirected networks. This climate system
is particularly well-studied and thus suitable for demonstrating how the proposed
methodology reproduces known climatic features, but also how it can reveal previously
undocumented results.
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As explained in chapter 3, we assume that the underlying climatic mechanisms
are encoded in the topological characteristics of networks calculated from the most
synchronous extreme rainfall events. We quantify these topological properties by
employing the network measures betweenness centrality (BC), mean geographical
distance (MD), clustering coefficient (CC), as well as the here introduced long-ranged
directness (LD). For each of these measures, we provide climatological interpreta-
tions, put these interpretations into relation with previous studies on the climatic
mechanisms involved in the SAMS, and intend to show that our results are consistent
with these climatological features.

It should be noted that most previous climate network approaches focused on
large-scale analyses of low-to-moderate spatiotemporal resolution data (e.g. Tsonis
et al., 2007; Gozolchiani et al., 2008; Yamasaki et al., 2008; Donges et al., 2009b). But
high spatiotemporal resolution data derived from station networks or satellite data
(such as the here used TRMM 3B42 daily satellite product) are crucial for identifying
low-frequency and high-magnitude rainfall events. By analyzing these data with
undirected networks, we unravel spatiotemporal connections between atmospheric
processes that directly link to natural hazards occurring at the Earth’s surface. We
emphasize that the small-scale linkages, orographic rainfall barriers, and important
climate patterns and meteorological mechanisms are only adequately resolved with
data on high spatial and temporal scales.

4.3. Data

We employ the TRMM 3B42 V7 daily satellite product (Huffman et al., 2007) from
January 1st 1998 to December 31st 2012 (15 years) with spatial coverage of 40◦S
to 15◦N and 85◦W to 30◦W (Fig. 4.1) at a resolution of 0.25◦ × 0.25◦, resulting in
N = 48400 time series. Rainfall sums are measured in [mm/day].
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Figure 4.1.: A. Elevation and key features of the SAMS. B. Mean daily rainfall for the core
monsoon season from December to February (DJF). C. The 90th percentile of
rainfall for DJF. D. Difference of the 95th and the 90th percentile for DJF.
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4.4. Methods

Here, we provide a brief revision of the methodology, with particular focus on testing
statistical significance and the climatological interpretations of the employed network
measures. We refer to chapters 2 and 3 for additional information and detailed
mathematical definitions.

4.4.1. Event selection

At each grid point and for each three-months season (DJF, MAM, JJA and SON),
we consider events above the 90th and 95th percentile of the rainfall time series
(15 years of data × 90 days per season × 10% (5%) = 135 (68) events at each grid
point). Grid points with less than 135 (68) wet days are discarded from the analysis
(Fig. 4.1C). These are regions in the eastern Pacific and near the Atacama Desert
in northern Chile with very low rainfall amounts and only very infrequent rainfall
events. Thus, in order to overcome the problems related to the influence of the event
rate on comparability of values of ES discussed in section 2.2.1, here we construct
the event series such that we obtain the same number of events at each location.

4.4.2. Network construction

We compute the matrix ESsym (cf. equation (2.4)) using a maximal time delay
of τmax = 3 days. For each grid-point pair (i, j) we thus summed the values for
both directions (from i to j and from j to i), thereby loosing all information about
directionality. Upon calculating ESsym for all pairs of grid points, we consider events
at a grid cell j to be synchronous to events at a grid cell i if the corresponding value
ESsym

ij is among the highest 2% of all entries of ESsym. We denote this by a link
between i and j and will say that i and j are connected. In this way we obtain two
undirected networks (one for each event threshold) for each three-months season. For
the monsoon season (DJF), the lowest value of ES which is represented by a link is
ESsym = 0.34 (0.23) for events above the 90th (95th) percentile.

To estimate statistical significance of the network links, we construct 10000 inde-
pendent event series with 135 (68) independently and uniformly randomly distributed
events and calculate ESsym for τmax = 3 for all possible pairs. From the histogram
H of all these values, we obtain an estimator of the probability of values of ESsym to
be larger than or equal to the network threshold ESsym (and hence the probability
of a network link) given such a set of independent time series (cf. equation (2.8)):

P (ESsym ≥ ESsym) =
∫ 1

ESsym
H(s)ds (4.1)

Note that H is in the case at hand independent from the event rates, as these
are identical in each time series. For ESsym = 0.34 (0.23), we obtain a p-value
of P (ESsym ≥ ESsym) = 0.03 (0.01), and thus all network links correspond to
significant values of ES at the 5%-confidence level.
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4.4.3. Network measures

We analyze the topology of these networks and thereby derive spatial patterns with
the following four network measures: betweenness centrality (BC), mean geographical
distance (MD), the clustering coefficient (CC), and long-ranged directedness (LD).

First, we employ betweenness centrality (BC, equation (3.7)). As explained in
section 3.4.1, it is based on the concept of shortest geodesic paths in the network,
which are the shortest sequences of links leading from one grid point to another.
For given grid points j and k, we first look for all shortest paths between j and k
and then calculate the ratio of the number of such shortest network paths that pass
through a third grid point i, and the total number of shortest network paths between
j and k. BC at grid point i is then defined as the sum of these ratios over all j and k.
If a grid point lies on many such shortest paths between any pairs of grid points, its
BC will be high and we interpret it to be important for the propagation of extreme
rainfall events, in particular over large spatial distances.

Second, we calculate the mean geographical distance (MD, equation (3.9)) of the
connections at a grid point. We use this measure to estimate the spatial scales at
which a grid point is connected to other regions. Areas with high MD are thus likely
to be part of teleconnection patterns between regions of high synchronization.

Third, we calculate the clustering coefficient (CC, equation (3.8)), which at a given
grid point is defined as the relative frequency of pairs of network neighbors of this grid
point that are network neighbors themselves. A region with high CC is interpreted
to exhibit large spatial coherence of extreme rainfall events.

Fourth, we introduced a combination of these three measures called long-ranged
directedness (LD, equation (3.10)). The three measures BC, MD, and CC illustrate
complementary aspects of the network and its topology, and our analysis of the
SAMS is based on their combination. This allows us to obtain more detailed and
robust insights into the underlying mechanisms of the SAMS than with just one
network measure alone. We classify a region’s extreme rainfall characteristics from
regionally clustered to long-ranged and directed by introducing LD. For example,
we expect extreme rainfall in a region with low LD (resulting from low BC and low
MD in combination with high CC) to occur spatially coherently (and extensively
within that region) with little long-range impacts. In particular, frequent spatially
extensive contiguous events will lead to this combination of network measures, which
can thus be an indicator for regions with more frequent development of Mesoscale
Convective Systems (MCS). On the other hand, extreme rainfall in a region with
high LD values resulting from high BC and high MD in combination with low CC is
expected to involve highly dynamical, directed moisture transport processes along
narrow transport routes and over large spatial scales.

The fact that we only consider a bounded spatial domain can influence the spatial
distribution of these four network measures, as it may impose restrictions on the
placement of possible network links. This is commonly referred to as the effect of
spatial embedding of the network (see section 3.5). We correct for this effect following
Rheinwalt et al. (2012) by dividing the value of each measure at each grid point (Mi)
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by the value expected from the spatial embedding alone (cf. equation (3.22)). The
expectation value < Mi > is either obtained analytically, or – for measures where no
analytical formula exists – obtained by averaging Mi over a collection of 1000 random
surrogate networks preserving the relative frequency of links given their geographical
distance (Figure 4.2).

4.5. Results

4.5.1. Extreme rainfall (> 90th percentile)

Here, we present our results for the 90th percentile of the peak monsoon season (DJF).
Figures for the remaining seasons and for events above the 95th percentile can be
found in Appendix A. For all network measures we show the values after correcting
for the effects of the spatial embedding (Figure 4.2).

We observe a region of high BC and MD but rather low CC and therefore high
LD over the tropical Atlantic Ocean between the equator and 5◦N (Fig. 4.3). This
corresponds to the climatological position of the ITCZ.

The same combination of BC, CC, and MD, resulting in even higher LD, can be
observed over a large continuous area in the central Amazon Basin around 5◦S, 60◦W
(Fig. 4.3).

Moderately high LD-values extend from the central Amazon southeastward towards
southeast Brazil (Fig. 4.3D). This wide branch, meeting the coast at about 20◦S,
corresponds to the climatological position of the continental part of the SACZ
(Carvalho et al., 2004).

Starting at about 10◦S, 70◦W, a concise narrow band of high LD extends south-
eastwards along the eastern slope of the Andes. In northern Argentina, this band
splits into two branches, one leading southwards until approximately 30◦S (Fig. 4.3),
and one leading eastwards, reaching the Atlantic coast in southernmost Brazil. The
position of the northern part of this signature, before it splits into two branches,
coincides with that of strong orographic rainfall at the eastern Andean slopes associ-
ated with low-level winds transporting moisture from the Amazon Basin towards the
subtropics (Bookhagen and Strecker, 2008), (Fig. 4.1).

Large parts of the La Plata Basin in Paraguay, southern Brazil, NE Argentina and
Uruguay are characterized by high CC, rather low BC and MD and thus low LD
(Fig. 4.3). These areas are known for their frequent development of MCS (Salio et al.,
2007). This region is intermitted by the eastern branch of high LD mentioned in the
previous paragraph.

4.5.2. Most extreme rainfall (> 95th percentile)

When only events above the 95th percentile are taken into account, LD is decreased
as compared to the 90th percentile in the La Plata Basin. In contrast, LD exhibits
increased values in the SACZ, in western Paraguay and at the outlet of the Amazon
River (Fig. 4.4).
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Figure 4.2.: The influence of the spatial embedding on the spatial distribution of the network
measures betweenness centrality (BC, top row), mean geographical distance (MD,
middle row), and clustering coefficient (CC, bottom row). The left column shows the
uncorrected measure distributions, the middle column shows the spatial distribution
of the three measures that would be expected from the spatial embedding alone,
and the right column shows the corrected values. Corrections are carried out by
dividing the uncorrected values by the values expected from the spatial embedding
(cf. equation (3.22) and the corresponding explanations).
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Figure 4.3.: A. Betweenness centrality (BC) on a logarithmic scale for DJF. This measure
indicates the importance of a grid point for the long-range spatial propagation of
extreme rainfall events. We observe high values in several areas that are crucial
for water-vapor transport, especially in the central Amazon Basin and along the
orographic barrier of the eastern Andes. B. Mean geographical distance (MD) for the
same time period. For example, high values are found in the central Amazon Basin
and along the eastern Andean slopes, which can be explained by their important
role for moisture transport to the subtropics and the large spatial scales involved.
C. The clustering coefficient (CC) for the same time period. It measures the
degree of spatial coherence in the distribution of extreme rainfall. Note the high
values in southeastern South America, where Mesoscale Convective Systems (MCS)
frequently develop. D. Long-ranged directedness (LD) for the same time period.
Low values indicate areas where extreme rainfall occurs regionally coherently as
e.g. in MCS, while high values indicate areas where extreme rainfall propagates
on narrow transport routes over large spatial distances, as e.g. along the eastern
Andes slopes.
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Figure 4.4.: Difference of LD of the 95th and the 90th percentile for DJF. High values indicate
areas which are more important for the large-scale propagation of events above the
95th percentile, while low values indicate areas where regional clustering of events
(as e.g. in MCS) enhances for events above the 95th percentile.
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4.6. Discussion

4.6.1. Rainfall > 90th percentile

The region adjacent to the ITCZ is identified as the most important source for the
large-scale distribution of extreme rainfall over the entire continent, as it is the only
oceanic region in the considered domain with high BC.

The importance of the central Amazon Basin for the spatial distribution of extreme
rainfall to most of the remaining continent can be explained by its geographical
position combined with its dense vegetation cover: Rapid propagation of squall lines
from the northeastern coast of Brazil into the Amazon Basin are responsible for most
of the spatial distribution of extreme rainfall in this region (Garreaud and Wallace,
1997). The landfall of these thunderstorm systems leads to locally high clustering
near the outlet of the Amazon River (Fig. 4.3C). These storm lines are followed by
enhanced moisture inflow and convective activity because of latent heat release and the
resulting strengthening of low-level easterlies (Cohen et al., 1995). Evapotranspiration
recharges the moisture content of the low-level atmosphere (Eltahir and Bras, 1993;
Lettau et al., 1979) and the deep convection leads to further extreme rainfall. At
the same time, the enhanced low-level winds transport the moisture further west
and south, which leads to synchronized rainfall there and thus explains the high BC
values in the central Amazon Basin (Fig. 4.3A).

The SACZ is shaped by the continental wind patterns mainly resulting from the
interplay of trade winds and the orographic barrier of the Andes (Carvalho et al.,
2004). This suggests that extreme rainfall in this area is dictated by long-ranged,
directed transport processes, which is consistent with high LD (Fig. 4.3D).

The band of high LD along the eastern slopes of the Bolivian Andes (Fig. 4.3D)
highlights the importance of this region for the large-scale moisture transport (we
emphasize the particularly high MD in this region, Fig. 4.3B). Its geographical
position suggests that this network signature is due to the interplay of orographic
effects and the conveyer belt providing moisture for subtropical South America
(Bookhagen and Strecker, 2008; Arraut et al., 2012). It is located slightly farther
west than the climatological position of SALLJ (Marengo et al., 2004), presumably
because orographic effects overprint the moisture advection signal related to these
wind systems. In other words, since our approach is only based on rainfall events, the
resulting network measures reveal locations that are crucial for the synchronicity of
extreme rainfall associated with large-scale moisture transport, but not the transport
processes themselves. These rainfall events are strongly enhanced by orographic effects,
which shift the patterns towards the Andes, i.e. westwards from the climatological
position of the main wind routes. We stress that only high spatiotemporal resolution
data are able to uncover the spatial distinction of these features.

The position of the branch of high LD extending southwards from the border of
Bolivia and Argentina suggests that this pattern corresponds to extreme rainfall
associated with moisture transport by the Chaco Jet, a southward extension of the
SALLJ controlled by the Chaco Low (Salio et al., 2002; Saulo et al., 2004). We
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interpret the branch of high LD extending eastward from the border of Bolivia
and Argentina to be the transport route towards the La Plata Basin. This area is
characterized by high synchronicity of extreme events, and it is consistent in shape
with the climatological moisture transport route (Arraut et al., 2012).

Furthermore, the network measures identify regions with frequent occurrences of
MCS in southeastern South America, characterized by low LD. In particular, we
emphasize the high CC in Paraguay, the typical exit region of the SALLJ, which
provides moisture for MCS. We note that areas corresponding to the eastern branch
of high (instead of low) LD have been previously described to exhibit frequent MCS
development as well (Durkee et al., 2009; Durkee and Mote, 2009). This discrepancy
stems from an additional climatological process, namely the directed propagation of
extreme events along the rather narrow eastern branch of high BC, which seems to
overprint the expected signature of high CC.

4.6.2. Comparison of spatial patterns for rainfall above the 90th and
above the 95th percentiles

The substantial differences in LD between extreme (> 90th percentile) and most
extreme (> 95th percentile) rainfall suggest different spatial patterns for the prop-
agation of events (Fig. 4.4). For the most extreme events, the role of the SACZ is
enhanced (Fig. 4.4). We attribute this to higher synchronicity of events above the
95th percentile along the SACZ due to an increased number of events during phases
of intensified SACZ, as was previously described by Carvalho et al. (2004). Decreased
LD values for events above the 95th percentile in the La Plata Basin indicate an
enhanced role of MCS for the most extreme rainfall events in this region because,
as described above, low LD is interpreted to indicate regions with frequent MCS
development. On the other hand, increased values of LD in western Paraguay suggest
that the SALLJ is more important for the directed propagation of events above the
95th percentile in this region. Similarly, we infer that the squall lines in NE Brazil
are more important for the large-scale propagation of the most extreme events.

4.7. Conclusion

We analyzed the synchronicity of extreme daily rainfall events of the South American
Monsoon System (SAMS) by means of undirected networks. The networks were
constructed from the symmetric version of Event Synchronization, ESsym. This
similarity measure was applied to daily seasonal extreme events, which were obtained
from high spatiotemporal resolution rainfall data (daily data at 0.25◦ × 0.25◦) derived
from remote-sensing measurements. We introduced a new combination of network
measures, called long-ranged directedness, which quantifies the characteristics of
spatial distribution and geographic connectivity of extreme rainfall. The spatial
patterns exhibited by this new measure reveal the most important large-scale features
of the SAMS when considering events above the 90th percentile. These include the
propagation of mesoscale storm systems, areas of deep convection in the Amazon Basin,

41



Chapter 4. Spatial Patterns of Extreme Rainfall Co-Variability

the main rainfall-transport routes to the subtropics including the South American
Low-Level Jet and its interplay with orographic processes at the eastern Andean
slopes, as well as the Intertropical Convergence Zone (ITCZ) and the South Atlantic
Convergence Zone (SACZ). In a final step, we have analyzed the differences in spatial
patterns between network measures derived for rainfall events above the 90th and
above the 95th percentile. The resulting patterns reveal that the South American
Low-Level Jet as well as Mesoscale Convective Systems play an enhanced role for the
most extreme events. The simplicity of the approach, together with the consistency
of the results with previous studies of the SAMS, shows the unique potential of the
developed methodology for climatological studies.
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Chapter 5.

Extreme Rainfall Associated with the
South American Rainfall Dipole

5.1. Summary

Intraseasonal rainfall variability of the South American monsoon system is character-
ized by a pronounced dipole between the region around Buenos Aires in southeastern
South America and southeastern Brazil, including Saõ Paulo and Rio de Janeiro.
Here, we analyze the dynamical properties of extreme rainfall events associated
with the rainfall dipole between these two regions by computing the matrix ESsym

separately for the two phases of the dipole. By construction, the event rates will
typically be different from one location to another, calling for an adapted way to
determine statistical significance of the entries of ESsym. We make the following main
observations in this chapter: i) Our approach reveals the dominant climatological
propagation routes of extreme events corresponding to the two dipole phases. ii)
While extreme rainfall propagation in the tropics is directly driven by the trade winds
and their deflection by the Andean Cordillera, extreme rainfall propagation in the
subtropics is mainly dictated by frontal systems. iii) The well-known rainfall dipole
is in fact only the most prominent mode of an oscillatory pattern that extends over
the entire continent. This suggests that the influence of Rossby waves emanating
from the western Pacific Ocean, which cause frontal systems over South America and
impact large-scale circulation patterns, extends beyond the equator. This chapter is
related to the associated publications P2 and P3 and the following presentation will
closely follow their content. Supplementary figures for this chapter can be found in
appendix B.

5.2. Introduction

We aim at an improved understanding of the characteristics and origins of extreme
rainfall (above the 90th percentile of wet days) in the two most densely populated
areas in South America, namely southeastern South America (SESA) around Buenos
Aires between 30◦S and 35◦S and southeastern Brazil (SEBRA) including Saõ Paulo
and Rio de Janeiro between between 18◦S and 23◦S (see Figure 5.1).

Large parts of the economies in these two regions depend on agriculture. They are
thus heavily reliant on continuous water supply for irrigation and energy generation,
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Figure 5.1.: Top: Topography of South America and key features of the South American monsoon
system, including the South American Low Level Jet (SALLJ). The climatological
positions of the Intertropical Convergence Zone (ITCZ) and the South Atlantic
Convergence Zone (SACZ) are shown by dashed black lines, while the two study
areas SESA (30◦S to 35◦S and 60◦W to 53◦W) and SEBRA (18◦S to 23◦S and
47◦W to 40◦W) are indicated by red boxes. Bottom: The time series of the number
of extreme events in SESA (top) and SEBRA (bottom) for the monsoon season
(DJF) of 2005. The 80th percentile thresholds used to define SESA and SEBRA
phases are indicated by horizontal dashed lines.
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but also particularly vulnerable to damages caused by extreme rainfall and associated
floodings and landslides (Berbery and Barros, 2002; Carvalho et al., 2002; Barros
et al., 2006; Marengo et al., 2013b).

As outlined in section 1.2, rainfall in South America during the monsoon season
(December to February, DJF) depends on atmospheric low-level moisture inflow from
the tropical Atlantic Ocean to the Amazon Basin provided by the trade winds (Zhou
and Lau, 1998). After crossing the Amazon Basin, the low-level winds are blocked by
the Andes mountains and channeled southwards. There exist two different regimes for
the direction and strength of the subsequent low-level flow: i) If the flow has a strong
southward component, it establishes the South American Low-Level Jet (SALLJ,
(Marengo et al., 2004)), transporting large amounts of moisture to northern Argentina
and SESA. This regime is associated with enhanced rainfall (Liebmann et al., 2004),
and in particular with the formation of mesoscale convective systems (MCS, (Salio
et al., 2007; Durkee et al., 2009; Boers et al., 2013)) in SESA. ii) If the flow exhibits
a pronounced eastward component, it transports moisture to the South Atlantic
Convergence Zone (SACZ) and leads to enhanced rainfall in SEBRA (Liebmann et al.,
2004; Carvalho et al., 2004). The dipolar behavior of rainfall between SESA and
SEBRA has been described as the most important source of intraseasonal rainfall
variability of the South American monsoon system (Vera et al., 2006; Marengo et al.,
2004; Jorgetti et al., 2013).

Several studies have investigated the dipolar rainfall pattern between SESA and
SEBRA during the monsoon season in South America. They mostly rely on principal
component analysis (PCA) on the basis of daily mean values of precipitation or
outgoing long-wave radiation (as a proxy for convection) data (Nogués-Paegle and
Mo, 1997; Liebmann et al., 2004; Marengo et al., 2004; Vera et al., 2006; Marengo
et al., 2012). However, no corresponding characteristics of spatial co-variability have
been analyzed for extreme values so far, since PCA is not applicable for this purpose,
as explained in chapter 1: PCA only includes the first two moments of the data
distribution, and is thus by construction not capable of capturing the characteristics
of extreme events, which are located at the tail of the distribution. Furthermore, it is
questionable in general to apply PCA to strongly non-Gaussian data distributions,
since the resulting empirical orthogonal functions (EOFs) are – while uncorrelated
– not independent and interpretation of their patterns is likely to be misleading
(Monahan et al., 2009). Here, we intend to fill this gap in the context of the South
American rainfall dipole by employing and refining the methodology developed in the
previous chapters.

5.3. Data

As in the previous chapter, we employ the satellite-derived and gauge-calibrated
rainfall data product from the Tropical Rainfall Measurement Mission (TRMM 3B42
V7, (Huffman et al., 2007)) with daily temporal and 0.25◦ × 0.25◦ spatial resolutions.
Geopotential height and wind fields at 850mb are obtained from NASA’s Modern-Era
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Retrospective Analysis for Research and Applications (MERRA, (Rienecker et al.,
2011)) on daily temporal and 1/2◦ × 2/3◦ spatial resolutions. The spatial domain
is confined to the coordinates 40◦S to 15◦N and 85◦W to 30◦W (Figure 5.1). All
datasets are analyzed for the monsoon seasons (December to February, DJF) between
1998 and 2012.

5.4. Methods

5.4.1. Extreme rainfall events

For each of the N = 48400 time series xi, we define extreme rainfall events as days on
which rainfall amounts exceed the 90th percentile of the rainfall distribution restricted
to wet days, i.e. days with rainfall sums larger than 0.01mm/day. This percentile
threshold is local in the sense that it depends on the respective grid cell’s rainfall
distribution. Different grid cells will thus by construction exhibit different numbers
of events l and thus also different event rates r.

5.4.2. Phases of the rainfall dipole

We define the two phases of the rainfall dipole between SESA and SEBRA on the
basis of extreme rainfall event frequencies in the two regions. The SESA (SEBRA)
phase of the dipole is defined as the set of days on which the sum of extreme events
in the entire spatial domain of the SESA (SEBRA) box exceeds the 80th percentile
(Figure 5.1). Note that these definitions are by construction independent in the sense
that the SESA (SEBRA) phase only depends on the number of events in the SESA
(SEBRA) box. Nevertheless, there is no temporal overlap between the two phases,
which can be explained by the dipolar rainfall pattern between the two regions.

This procedure amounts to an average of 18 active days for both SESA and SEBRA
phases per DJF season. Composites of rainfall, geopotential height, and wind, as well
as networks derived from ESsym will in the following be constructed separately for
these two phases.

5.4.3. Network construction

We will construct two separate networks for the two phases of the dipole in the
following way: For the computation of the Event Synchronization matrix ESsym for
the SESA (SEBRA) phase, we will only consider those binary entries in the event time
series {eμ

i }1≤μ≤li , which fall into the SESA (SEBRA) oscillation phase and ignore
remaining events.

For each grid cell (i, j), we need to estimate the statistical significance of the
empirical value ESsym

ij . For this purpose, we build a null model assuming that the
li events at i and lj events at j are placed independently according to a uniform
distribution: Upon constructing 1000 surrogate pairs of event time series for each
combination of event rates (ri, rj), we compute ESsym

i j for all these surrogate pairs
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(i, j), which yields a relative frequency distribution of values of ESsym consistent with
the assumptions of the null model. We infer the score of the 95% significance level
from this distribution following the procedure outlined in section 2.2.1 by determining
the threshold Tri,rj such that

P (ESij ≥ Tri,rj ) =
∫ 1

Tri,rj

Hri,rj (s)ds < 0.05 . (5.1)

A network link will be placed between grid cells i and j if the corresponding
empirical value ESsym

ij is above Tri,rj . For two arbitrary grid cells i and j, this can
be formally written in terms of the adjacency matrix A as

Aij = Θ(ESsym
ij − Tri,rj ) − δij , (5.2)

where Θ denotes the Heaviside function and Kronecker’s delta δ is added to exclude
links from a grid cell to itself.

5.4.4. Network measures

In this chapter, we consider two network measures in order to reveal the synchroniza-
tion pathways of extreme events corresponding to the two dipole phases. First, we
compute the degree (DG) as defined in equation (3.6). At each location i, this measure
yields the number of other grid cells where extreme events occur synchronously with
extreme events at i. In this sense, we expect DG to provide a local (i.e., based on next
neighbors in the network) estimate for a location’s importance for the propagation
of extreme events. Second, we are interested in the directions along which extreme
events occur synchronously. For this purpose, we employ the measure directionality
(DR) defined in equations (3.13) and (3.14). Following the explanations of this
measure in chapter 3, under the assumption that the temporal resolution of one day is
sufficiently high, we expect that rainfall clusters typically propagate perpendicular to
the streamlines by which this measure is visualized, which we refer to as isochrones.

5.5. Results

5.5.1. Atmospheric Conditions

Composites of geopotential height and wind fields constructed separately for the
two different dipole phases show distinctively different features (Figure 5.2). As
expected, we find anomalously high rainfall amounts over SESA for the SESA phase,
but negative anomalies over SEBRA (top row of Figure 5.2). We further observe
relatively low pressure values over SESA, which are associated with frontal systems
initiated by Rossby wave-type patterns originating from the western Pacific Ocean
(Siqueira and Machado, 2004; Liebmann et al., 2004; Seluchi and Garreaud, 2006).
This low pressure system extends northwestwards along the eastern slopes of the
southern Central Andes up to central Bolivia and forces the geostrophic low-level
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Figure 5.2.: Left: Composites for the SESA (top) and SEBRA (bottom) phase: daily rainfall
(background), and geopotential height (white lines) and wind fields at 850mb (black
lines). Right: Anomalies of the same variables with respect to DJF climatology.

winds from the Amazon Basin southward along the eastern slopes of the Central
Andes towards SESA (Nicolini et al., 2002).

For SEBRA phases (bottom row of Figure 5.2), rainfall composites show pronounced
positive anomalies over SEBRA, but negative anomalies over SESA. There is a high
pressure system over northern Argentina and SESA, and relatively low pressure over
SEBRA. This pressure configuration inhibits the southward flow from the Amazon
and instead turns it eastwards towards the SACZ. There, we find clear indicators of an
active convergence zone: northeasterly winds approaching from the tropical Atlantic
as well as northwesterly winds originating from the western Amazon Basin all converge
over the SACZ. These results are consistent with earlier studies on intraseasonal
rainfall variability over South America (e.g. Carvalho et al., 2002; Liebmann et al.,
2004; Carvalho et al., 2004).
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Figure 5.3.: Left: Degree (DG) normalized by the respective link density of the network for
the SESA (top) and SEBRA (bottom) phase. Right: Isochrones, wind fields at
850mb as well as the absolute value of the scalar product between wind vectors and
isochrones for the SESA (top) and the SEBRA (bottom) phase.

5.5.2. Complex network measures

For DG, we allow synchronizations of extreme events within a maximum delay of 3
days (τmax = 3), while for DR we only consider synchronizations at the very same day
(τmax = 0). The choice of two different maximal temporal delays is justified by the
different climatological interpretations we provide for the two network measures DG
and DR. Note that computing DG for τmax = 2 or τmax = 1 does not substantially
change the results (see Figures B.1 and B.2 in Appendix B).

5.5.3. Degree (DG)

For the SESA phase (top left in Figure 5.3), we observe high values of DG over the
ITCZ, the entire Amazon Basin, along the eastern slopes of the Andes from northern
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Figure 5.4.: Difference between Degree fields for the SEBRA and for the SESA phase. Note the
oscillation between positive and negative values extending over the entire continent
beyond the dipole between the SESA and SEBRA regions.

Peru to northern Argentina, as well as over SESA. In contrast, we find low DG values
over SEBRA.

For the SEBRA phase (bottom left in Figure 5.3), we observe a substantially
different spatial pattern of DG than for the SESA phase. High DG values in the
vicinity of the ITCZ are located farther north than for the SESA phase. Over most
parts of the Amazon Basin, values are even higher than for the SESA phase. Most
notably, the highest values are located over the SACZ, extending from the central
Amazon Basin to the subtropical Atlantic Ocean around 30◦S and 30◦W.

Note that the maximum delay τmax = 3 only serves as an upper bound for the
dynamical delay τ (equation (2.2)), assuring the unique association of events in the
computation of ES. Typically, extreme events synchronize on time scales shorter than
3 days, as is evident from comparing the results of Figure 5.3 with corresponding
results for τmax = 1 and τmax = 2 (shown in the appendix chapter B).

When subtracting the DG field for the SEBRA phase from the DG field obtained
for the SESA phase (Figure 5.4), the dipole between the two phases becomes clearly
recognizable: Highest positive values are located over SESA, while highest negative
values can be observed over SEBRA. However, it also becomes apparent that the
oscillation is not confined to the dipole between SESA and SEBRA, but farther
extends over the remaining parts of the South American continent, although with
smaller amplitude: Southwest of SESA, we observe negative values, while northeast of
the SACZ, around the equator, we find positive values for the DG difference. North
of 5◦N, we observe negative values again.
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5.5.4. Directionality (DR)

For the reason explained in section 5.4.4, directionality is calculated for networks
constructed from ES with τmax = 0, i.e. only events at the very same day are
counted as synchronous. For the SESA phase, we observe N-S oriented streamlines
over eastern Brazil, which turn anti-clockwise when moving farther west towards the
Peruvian and Bolivian Andes, where they are approximately NW-SE oriented. The
most pronounced streamlines can be found over SESA, where they are also oriented
in NW-SE direction. This orientation continues towards the SACZ, however with
reduced directionality strength DRs (indicated by thinner streamlines).

For the SEBRA phase, the N-S oriented streamlines over northern Brazil rotate
stronger than for the SESA phase when moving westward, with streamlines over
central Brazil already oriented in NW-SE direction. We observe a clear pattern
of almost straight, parallel streamlines extending from the central Amazon Basin
southeastward across the southeastern Brazilian coast to the subtropical Atlantic
Ocean. In contrast to the SESA phase, no streamlines can be observed over SESA.

For both dipole phases, we computed the scalar product between normalized wind
vectors at 850mb (near surface) and normalized DR at each grid point in order to
estimate the influence of the wind fields on the direction of extreme event propagation.
We take the absolute value of the scalar product, since DR only yields an angle
determining the orientation of network links rather then the actual direction. If
the scalar product is close to 0, the orientation of extreme-event propagation is
approximately parallel to the wind direction, while for values close to 1, it will be
approximately perpendicular.

For the SESA phase (top right in Figure 5.3), we observe small values (between 0
and 0.4) over almost entire tropical South America between 10◦N and 10◦S, while
the subtropics are characterized by values between 0.6 and 1.0. In particular, at the
eastern slopes of the Central Andes in southern Peru and Bolivia as well as in SESA,
the angles determined by DR are close to the wind angles.

For the SEBRA phase, the scalar product indicates that DR angles and wind
vectors are perpendicular over the entire tropics between 10◦N and 10◦S. However,
south of 10◦S, we find high values for the scalar product between wind vectors and DR
angles extending from Bolivia east of the Andes to eastern Brazil. In particular over
the climatological position of the SACZ, wind vectors and DR angles are typically
parallel.

5.6. Discussion

DG yields an estimate of the importance of a given grid point for the synchronization
paths of extreme events over the continent, as expressed by the number of other
grid points where extreme events occur synchronously with extreme events at this
grid point. It should be emphasized, however, that this does not imply that single
rainfall clusters propagate along the entire signature of high DG values, but rather
that possibly different extreme events synchronize along this signature.
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Complementarily, DR provides the typical orientation along which extreme events
synchronize. According to our interpretation that rainfall events propagate in direction
perpendicular to the DR streamlines, and further assuming that rainfall events in
tropical South America propagate from east to west rather than from west to east (e.g.
Zhou and Lau, 1998; Vera et al., 2006; Marengo et al., 2012), we infer the following
main climatological propagation pathways:

1. For the SESA phase, rainfall events originating from the tropical and subtropical
Atlantic Ocean enter the continent at the northern Brazilian coast, and propagate
westward over the Amazon Basin (top row of Figure 5.3). Extreme events synchronize
according to the direction dictated by the low-level wind fields until they reach
the western part of the Amazon Basin. As soon as they turn southward towards
the Peruvian and Bolivian Andes, the streamlines of simultaneous occurrence of
extreme events are aligned with the wind direction. This can be explained by the
orographic impact of the Andes mountains (Bookhagen and Strecker, 2008): When
the moist air is driven towards the mountains, it is lifted and causes extreme rainfall
along the entire eastern slope of the Central Andes, extending from Peru to Bolivia.
At the same time, the orography forces the low-level winds southward along the
mountain slopes. South of 20◦, we observe a pronounced propagation pattern over
SESA, which implies synchronization of extreme rainfall events in a SW-NE direction.
This is consistent with studies of extratropical cyclones and frontal systems, which
move from southern Argentina northeastward, causing abundant rainfall over SESA
(Siqueira and Machado, 2004; Seluchi and Garreaud, 2006). In SESA, wind directions
are perpendicular to the direction along which extreme-rainfall events synchronize,
which is typical for rainfall caused by these frontal systems, since the low-level winds
from the north follow the isobars and interact with the frontal systems (top right in
Figure 5.2). Thus, we infer that the synchronization direction of extreme events in
the tropics is determined by the low-level flow, while in the sub- and extra tropics,
the influence of frontal systems is dominant.

2. For the SEBRA phase, extreme events also propagate from the tropical Atlantic
Ocean westward to the Amazon Basin, but then occur simultaneously (i.e., at the same
day) in a large area extending from the central Amazon Basin to the southeastern
Brazilian coast and the adjacent subtropical Atlantic Ocean (Figure 5.4). The
orientation of isochrones suggests that they synchronize in NE-SW orientation, i.e.,
perpendicular to the wind direction, implying that frontal systems approaching from
the south play the most pronounced role for driving extreme rainfall in SEBRA.

The difference between the DG fields obtained for the SEBRA and SESA phases
suggest an oscillation over the entire continent rather then a single dipole between the
regions SESA and SEBRA. While these two regions are clearly the most pronounced,
the alternating pattern extends from central Argentina beyond the equator, with three
maxima and two minima in total between 40◦S and 15◦N. During austral summer,
large-scale circulation patterns in the form of Rossby waves, which emanate from
the western Pacific Ocean, induce northward-propagating cold fronts in subtropical
South America (Lenters and Cook, 1999; Rodwell and Hoskins, 2001). The observed
oscillation suggests that these Rossby waves control extreme-rainfall variability over
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the entire South American continent.

5.7. Conclusion

We studied the dynamical properties of extreme rainfall in the two most densely
populated areas in South America: southeastern South America (SESA) including
Buenos Aires and southeastern Brazil (SEBRA) around Saõ Paulo and Rio de Janeiro.
A dipolar pattern of average rainfall between these two regions has previously been
identified as the leading mode of intraseasonal variability in the South American
monsoon system. In order to study the dynamical properties of extreme rainfall events
associated with this dipole, we employed a combination of a non-linear synchronization
measure and complex network theory. This approach allowed us to identify the
pathways of extreme-rainfall synchronization and the network strength along these
pathways. By constructing separate networks for the two phases of the rainfall dipole
between SESA and SEBRA, we could distinguish the climatological synchronization
routes of extreme rainfall for the two regimes: For the SESA phase, this route leads
from the southern edge of the Intertropical Convergence Zone (ITCZ) across the
Amazon Basin and subsequently southward along the Andes mountains to SESA. For
the SEBRA phase, this path enters the continent north of the ITCZ and, after passing
the Amazon Basin, turns southeastward to SEBRA. By comparing climatological
wind directions with the orientations of streamlines of synchronous extreme rainfall,
we revealed a transition of driving mechanisms from the tropics to the subtropics:
extreme-rainfall propagation in the tropics is driven directly by the (mainly easterly)
low-level winds, but extreme-rainfall propagation in the subtropics is dominated by
frontal systems approaching from the southern tip of the continent.

Our results indicate that the rainfall dipole between SESA and SEBRA is only the
most prominent part of an oscillation which extends over the entire South American
continent. This suggests that indirect influences of Rossby waves originating from
the Pacific Ocean on extreme rainfall extend to tropical latitudes even beyond the
equator.
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Chapter 6.

Spatiotemporal Connectivity of
Extreme Rainfall in the Andes

6.1. Summary

The South American Andes are frequently exposed to intense rainfall events, which
lead to landslides and downstream flooding, resulting in significant infrastructural and
socio-economic damage. These events have varying moisture sources and precipitation-
forming processes. In this chapter, we assess their spatiotemporal characteristics and
geographical origins over the South American continent. We define four different
types of rainfall events: (1) Events which are determined by their high intensity alone
(magnitude), (2) long-lasting events (temporal extent), (3) events with large spatial
extent, and (4) high magnitude, long-lasting, and spatially extensive events. In a first
step, we analyze the frequencies, durations, and spatial extents of these events and
integrate their impact on the underlying hydrologic catchments. Our results indicate
that events of type 1 make the overall highest contributions to total seasonal rainfall
(up to 50%). However, each consecutive episode of the infrequent events of type 4,
lasting on average 6 to 12 hours, still accounts for up to 20% of total seasonal rainfall
in the subtropical Argentinean plains. In a second step, we determine the geographic
source regions of intense rainfall on the high-elevation Altiplano-Puna Plateau as well
as in the main river catchments along the foothills of the Andes mountain range using
directed Event Synchronization (ESdir) and constructing directed networks. We
resolve the synchronization structure of intense rainfall events at different locations and
unravel long-ranged climatic linkages. Our results suggest that one or two particularly
large squall lines per season, originating from northeastern Brazil, propagate towards
the eastern Andes and reach the high-elevation Altiplano. In general, we observe that
extreme rainfall in the catchments north of approximately 20◦S typically originates
from the Amazon Basin, while extreme rainfall at the Andean foothills south of 20◦S
and the Puna Plateau originates from southeastern South America. This chapter is
based on the associated publication P4, and the following sections will closely follow
that publication. Supplementary figures can be found in appendix C.
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6.2. Introduction

During the monsoon season from December to February, the South American Andes
are exposed to intense rainfall events that frequently lead to landslides and downstream
flooding, with severe socio-economic impacts (Moreiras, 2005a; Harden, 2006; Barros
et al., 2006; Programa de las Naciones Unidas para el Desarrollo (PNUD), 2011).
These events frequently occur as large and long-lasting thunderstorms. Characteristic
examples are the so-called Amazonian squall lines (Cohen et al., 1995) as well as
mesoscale convective systems (Maddox, 1980; Griffiths et al., 2009; Romatschke and
Houze, 2013; Boers et al., 2013), which attain largest spatial scales in southeastern
South America (Durkee et al., 2009; Durkee and Mote, 2009). In addition, the
interplay between the Andean orography and low-level easterly winds carrying large
amounts of moisture from the Amazon Basin (e.g. Poveda et al., 2014) is responsible
for intense rainfall peaks at the eastern slopes of the Andes (Bookhagen and Strecker,
2008; Houze Jr., 2012). The connection between large orographic thunderstorms and
flooding has for example been studied by Smith et al. (2011) for the case of the North
American Appalachians.

The local characteristics of extreme rainfall in terms of their frequency distribution
has been thoroughly studied in the literature (e.g. Renard et al., 2013; Papalexiou
and Koutsoyiannis, 2013; Serinaldi and Kilsby, 2014). In contrast, the temporal
durations and spatial extensions of extreme rainfall events in South America have
attracted much less attention (see e.g. Khan et al., 2007, for an exception), although
these characteristics are certainly of great hydrological importance. Furthermore,
the dynamical properties of extreme rainfall events, whilst taking into account
their spatiotemporal characteristics, need to be known for a robust assessment
of their geographical origins, and thereby of their potential predictability. This
becomes particularly relevant when identifying the sources of extreme rainfall in given
river catchments. Here, we will focus on four different types of rainfall events: (1)
events which are solely determined by their high magnitude; (2) events which are
characterized by their long duration and high magnitude; (3) spatially extensive
events; and (4) high magnitude, long-lasting and spatially extensive events.

In a first step, we will analyze the frequencies, intensities, and spatial extensions
of the four proposed event types and quantify their respective contribution to the
overall water budget of the main drainage basins along the Andean mountain range,
including several sub-basins of the Amazon and the La Plata rivers. We are particularly
interested in the spatial scales of rainfall clusters. We will determine the size of
these clusters by the number of grid cells belonging to a connected component of
simultaneous events and analyze the frequency distribution of these cluster sizes.

In a second step, we will investigate the geographic source areas of the four proposed
types of rainfall events for the mountainous Andean drainage basins, including
the high-elevation Altiplano-Puna Plateau. The spatiotemporal characteristics of
rainfall events on the Altiplano-Puna Plateau are crucial for understanding and
sustaining water resources in this region. While this area forms an almost continuous
topographic plateau with a mean elevation of 4041 ± 524 m and constitutes the
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Figure 6.1.: Topography of South America and the seven catchments C1 to C7 referred to in
the text, delineated by white contour lines. Their spatial extensions are derived
from SRTM data (Farr et al., 2007).

second-largest plateau on earth (after the Tibetan Plateau), the geomorphic and
climatic characteristics of its northern and southern parts are distinct (Messerli
et al., 1997; Vuille, 1999; Garreaud and Aceituno, 2001; Garreaud et al., 2003;
Bookhagen and Strecker, 2012). We therefore divide this arid 1800km long and
350km to 400km wide region into the northern Altiplano (C1) and the southern
Puna de Atacama (C2) Plateaus (Figure 6.1). In addition to the high-elevation
Altiplano-Puna Plateau, the origins of extreme rainfall are of particular hydrological
importance in the mountainous drainage basins along the Andes. We will divide
them into five sub-catchments roughly corresponding to the southern Andes (C3),
the southern Central Andes (C4), the Central Andes (C5), the northern Central
Andes (C6), and the northern Andes (C7) (Figure 6.1). We will occasionally refer
to the northern and northern Central Andes (C6 and C7) as tropical, and to the
remaining parts as subtropical. In order to determine the geographical origins of
extreme rainfall in these river catchments, we employ directed Event Synchronization
(ESdir, cf. equation (2.7)) and construct directed networks. In addition, we intend
to take into account different temporal and spatial scales of rainfall events. For this
purpose, we first carry out several steps of temporal and spatial pre-processing. We
then resolve the source regions of rainfall in the mountainous Andean catchments
(C1 to C7) with respect to the four types of rainfall events described above.
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6.3. Data

As before, we employ the gauge-calibrated remote-sensing derived rainfall dataset
TRMM 3B42 V7 of the Tropical Rainfall Measurement Mission (Huffman et al., 2007)
for the time period from 1998 to 2012 for the spatial domain 15◦N to 40◦S and 85◦W
to 30◦W with a spatial resolution of 0.25◦ × 0.25◦. However, here we employ the
3-hourly version of this dataset. For each 3-hourly time step, values are provided as
average rainfall rate in units of [mm/h].

River catchments have been delineated from resampled topographic data (Shuttle
Radar Topographic Mission, (Farr et al., 2007)) at a spatial resolution of 15 arcseconds
(≈ 500m).

6.4. Methods

6.4.1. Definition of extreme events

We will focus on the monsoon season in South America from December to February
(DJF). We analyze the following three different spatial and temporal characteristics
of 3-hourly rainfall events: Their intensity, duration, and spatial extent.

Our goal here is to disentangle the impacts and origins of extreme rainfall in the
main Andean drainage basins with respect to their intensity, duration, and spatial
extent. Depending on these characteristics, we apply several steps of preprocessing:

1. Let the rainfall time series at location i be denoted by t̃i, where 1 ≤ i ≤ N =
48400. We can apply a running-mean filter in order to account for the temporal
duration of rainfall events:

tσ
i :=

∑w
s=−w t̃σ+s

i

2w + 1 , (6.1)

where σ is the time index and 2w + 1 is the width of the running-mean filter. For
ease of notation, we omit making the dependency of tσ

i on w explicit. The application
of this running-mean filter will in the following be referred to as smoothing.

2. For each filtered time series ti, we define local event thresholds T p
i by computing

the pth percentile of all tσ
i with tσ

i > 0.2mm. The latter condition assures that only
significant rainfall amounts ("wet times") are taken into account when computing
the percentile thresholds. Local events are then defined as time steps σ for which tσ

i

is above this threshold:

ẽi := {σ|tσ
i > T p

i } (6.2)

Again for the sake of clarity, we omit to make explicit that ẽi depends on w as well
as on p.

3. We are also interested in the spatial extent of events, given by the size of
connected components {Cσ

m}1≤m≤Nσ with simultaneous events ẽi at a given time σ.
Here, grid points are considered to be connected if they are horizontally, vertically,
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or diagonally adjacent in space, and Nσ denotes the total number of connected
components at time step σ. To each grid point i, we then assign the size of the
component it belongs to:

SCσ
i =

∑
{Cσ

m}
δCσ

m
(i)|Cσ

m| , (6.3)

where |Cσ
m| denotes the cardinality of Cσ

m (i.e., the number of elements in that set)
and δCσ

m
(i) = 1 if i ∈ Cσ

m and δCσ
m

(i) = 0 otherwise. We then define a component size
threshold Sq

i at each grid cell i as the qth percentile of all SCσ
i for which SCσ

i > 0
(i.e., the qth percentile of the set {SCσ

i |σ such that SCσ
i > 0}).

We then define spatially extensive events as local events which belong to a connected
component that is larger than the corresponding Sq

i :

ei := {ẽi|SC ẽi
i > Sq

i } , (6.4)

which depends on the width of the temporal filter w, the intensity threshold T p
i ,

and the threshold for the cluster size Sq
i .

We define the following four types of events that we will analyze in the following
sections:

1. Local and short extreme events (LSE), which are intense rainfall events (high
magnitude), regardless of their duration and spatial extent: w = 0, p = 90, and
q = 0

2. Local and long-lasting extreme events (LLE), which are long-lasting intense
rainfall events, but without condition on their spatial extent: w = 5, p = 90,
and q = 0

3. Spatially extensive events (SEE), which are not necessarily very intense or
long-lasting: w = 0, p = 50, and q = 90

4. Spatially extensive and long-lasting extreme events (SLE): w = 5, p = 90, and
q = 90

We note that these four definitions are deliberately not disjoint, i.e., given events
may be part of two or more of these classes. The reason for this is that for a given
event type, we are interested in the characteristics of all events of that type, in
contrast to the characteristics of events which only fulfill the conditions of one event
type, but none of the conditions of the remaining three event types.

6.4.2. Network construction

We compute the directed synchronization matrix ESdir (equation (2.7) in chapter 2)
for the four events types described above using a maximal delay τmax = 8 time steps
of three hours, corresponding to one day. Since the event rates at each location are
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typically different, we determine statistical significance and thus the condition for
placing a network link in a similar way as in chapter 5. However, the specific null
hypotheses differs slightly from the one assumed there: Due to the high temporal
resolution of three hours, many events will occur subsequently4. We therefore
construct independent surrogates which preserve the event rate as before, but now
they also preserve this block structure of subsequent events. From each original time
series (48400 in total), we thus construct surrogate time series by uniformly randomly
distributing original blocks of subsequent events. On the basis of this null model, we
proceed to determine statistical significance in the same way as described in chapter
5 (cf. equation (5.1)), but in this case for directed network links. As explained in
chapter 3, a non-zero entry Aij of the non-symmetric adjacency matrix represents a
network link pointing from node j to node i.

6.4.3. Application of Complex Networks

We will use the directed networks constructed in this way to determine the geographic
origins of extreme rainfall in a given region of interest R. This methodological
framework is well-suited for this task, since it is designed to reveal possibly non-linear
climatic linkages on the basis of event time series.

We modify the regional connectivity RC of R to the directed case by counting for
each grid point i the number of links pointing into R:

RCi(R) =
∑
j∈R

Aji (6.5)

This measure yields a value for each grid cell i, indicating the number of grid cells
inside R where extreme events occurred synchronously after they occurred at i. In
order to be able to visualize RC for different regions on the same spatial map, we will
in the following use a binary version of this measure: A grid point i will be considered
to have strong linkages to a region R if the number of network links pointing from i
to R is more than ten times larger than what should be expected from a uniformly
random placement of all available links.

By indicating where rainfall events typically occur before they synchronously occur
in a region under consideration, RC estimates the geographic origins of rainfall events
in that region. These directed climatic linkages are helpful for understanding the
meteorological processes causing rainfall events, but also provide essential information
for assessing the predicability of extreme events in any region R.

In section 6.5.2, we will investigate these climatic linkages separately for the four
different event types proposed above.

4Also refer to the corresponding discussion before equation (2.6) in section 2.2.
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6.5. Results

6.5.1. Frequency, intensity, and spatial extent of rainfall events

Rainfall Intensity. The monsoon season in South America is characterized by high
mean rainfall values in the vicinity of the Intertropical Convergence Zone (ITCZ),
in the Amazon Basin and along the South Atlantic Convergence Zone (SACZ), as
well as along the eastern slopes of the Peruvian and Bolivian Andes (Figure 6.2A).
The 50th percentile scores of wet times (hourly rainfall larger than 0.2mm/h) shows
highest values at the northeastern South American coast, the eastern slopes of the
Bolivian Andes as well as in northern Argentina (Figure 6.2B). 90th percentile scores
of 3-hourly wet times exhibit highest values at the eastern slopes of the Bolivian Andes
as well as in northeastern Argentina (Figure 6.2C). While the spatial distribution
of 90th percentile scores for 3-hourly wet times of the 15-hour smoothed time series
(Figure 6.2D) resembles that obtained for the non-smoothed case, the assumed values
are considerably lower due to the temporal smoothing.

Frequencies of the four event types. In the previous section, we have defined
four types of extreme events (which can be considered end member scenarios) that we
will analyze in more detail: LSE, LLE, SEE, and SLE. Each event type occurs with
different frequencies, although the relative spatial distribution of these frequencies
remains similar (Figure 6.3). We emphasize that by frequency, we refer to the number
of 3-hourly time steps which have an event, implying that, e.g., 4 consecutive time
steps fulfilling the respective event condition are counted as 4 events.

1. For LSE, we obtain typical values between 12 and 18 events per DJF season in
the Amazon Basin and at the eastern Andean slopes north of 20◦S, but only
around 4 to 6 events in the subtropical plains of southern Bolivia, Paraguay,
northern Argentina, and the adjacent Andean slopes (Figure 6.3A).

2. For LLE, these numbers are 25 to 30 and 7 to 12 respectively (Figure 6.3B).

3. For SEE, there are between 7 and 10 events in the Amazon Basin at the slopes
of the northern Central Andes and between 1 and 4 events in the subtropical
plains (Figure 6.3C).

4. For the most extreme SLE, we find 1 to 4 events in the Amazon Basin and the
adjacent foothills of the Andes, but less than one such event per season in the
subtropics of northern Argentina and Uruguay (Figure 6.3D).

Most notably, for all four event types, we observe a pronounced latitudinal gradient
of event frequencies between the tropics and the subtropics: the northern, tropical
regions have high event frequencies, while the subtropics exhibit considerably lower
frequencies.

Contributions to total seasonal rainfall. The fraction of total DJF rainfall
sums (not confined to wet times) accounted for by the four event types varies
considerably:
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Figure 6.2.: A. Mean hourly rainfall for DJF from 1998 to 2012. B. 50th percentile of rainfall
distribution confined to wet times (i.e., 3-hourly time steps with average hourly
rainfall larger than 0.2mm/h). C. 90th percentile of rainfall distribution confined
to wet times. D. 90th percentile of 15-hour smoothed (using a 5-point moving
average) rainfall distribution confined to wet times.
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Figure 6.3.: Number of events per DJF season for local and short extreme events (A: LSE),
local and long-lasting extreme events (B: LLE), spatially extensive events (C: SEE),
and spatially extensive long-lasting extreme events (D: SLE).
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1. LSE events account for more than 40% of total seasonal rainfall in large parts
of tropical South America, and even more than 50% in the some areas in the
subtropics (Figure 6.4A).

2. The spatial distribution of total rainfall fractions for LLE is similar to the one
obtained for LSE, but local values are about 10% lower (Figure 6.4B).

3. In contrast, SEE account for much lower fractions of total rainfall, with values
ranging between 5% and 10% in most of Brazil, and between 10% and 20% in
the subtropical plains (Figure 6.4C).

4. The lowest contributions were found for SLE, with fractions reaching 10% only
in some parts of northern Argentina and Paraguay (Figure 6.4D).

Consecutive time steps with events will in the following be referred to as bursts.
We emphasize that typical time scales of duration of the four events types (i.e., the
number of events per bursts) vary by definition: bursts of LSE and SEE usually last
3 − 6 hours (roughly 1 to 2 events), while for LLE we find typical duration periods of
9−15 hours (3−5 events), and SLE last 6−12 hours (2−4 events) (see Figure C.1 in
appendix C). In order to adjust for the varying event frequencies and burst durations
when considering fractions of accounted DJF rainfall, we compute the average fraction
of total DJF rainfall contributed by a single burst (Figure 6.5).

1. We find that each LSE burst accounts on average for 3% − 4% of total DJF
rainfall in the Amazon Basin and the eastern slopes of the northern and northern
Central Andes. In contrast, up to 10% of total DJF rainfall is accounted for by
each burst in the subtropical plains (Figure 6.5A).

2. LLE bursts contribute more to total DJF rainfall, with corresponding fractions
between 4% and 8% in the tropics and up to 20% in the subtropics (Figure 6.5B).

3. For SEE, we find contributions below 2% in the Central Amazon Basin and
between 6% and 10% in northern Argentina (Figure 6.5C).

4. Finally, SLE contribute 2% to 6% to total DJF rainfall in the tropics, and up
to 20% in the subtropics (Figure 6.5D).

We note that, by dividing these values by the typical numbers of events per burst,
the fraction accounted for by each single event can be obtained. For an integration
of these fractions with respect to the mountainous catchments C1 to C7 we refer to
Figure C.1 in appendix C.

Spatial extensions. The two event types SEE and SLE involve a minimum
spatial size of connected components of simultaneous events (their minimum "rainfall
cluster size", Sq

i ). We show this size in units of km2, which we obtain by computing
(0.25◦ × 111km)2 × Sq

i × cos(λ), where λ ∈ [−40◦, 15◦] denotes the latitudinal angle.
We emphasize that the conversion from the number of grid cells to km2 is only
approximately true, since the spatial distribution of the component size thresholds
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Figure 6.4.: Percentage of total DJF rainfall contributed by local and short extreme events (A:
LSE), local and long-lasting extreme events (B: LLE), spatially extensive events (C:
SEE), and spatially extensive long-lasting extreme events (D: SLE).
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Figure 6.5.: Average percentage of total DJF rainfall contributed by each single burst of con-
secutive events of type local and short (A: LSE), local and long-lasting (B: LLE),
spatially extensive (C: SEE), and spatially extensive long-lasting (D: SLE).
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is biased by the dependence of the grid cell size on the latitudinal position. We
correct for this effect by weighting each threshold value with cos(λ). The component
size threshold for SEE (Figure 6.6A) shows highest values north of the ITCZ over
the tropical Atlantic Ocean and east of the Brazilian coast south of 10◦S. Over
southeastern South America values are smaller than in the latter regions, but still
higher than over the remaining part of the continent. In contrast, SLE events
(Figure 6.6B) exhibit highest component size thresholds over southeastern South
America, centered over Uruguay.

6.5.2. Regional Connectivity of Andean Catchments

In the second step of this chapter, we investigate the origins of extreme rainfall on the
Altiplano-Puna Plateau (C1 and C2, Figure 6.7) in Bolivia and northern Argentina
as well as at the eastern foothills of the entire Andean cordillera, which we resolved
with respect to the various drainage basins located along the mountain range (C3 to
C7, Figure 6.8).

Altiplano-Puna Plateau (C1 and C2)

1. For LSE, we observe almost no linkages from other regions of South America
for both C1 and C2 (Figure 6.7A).

2. For LLE, we observe few linkages from some scattered locations in northern
Argentinean plains to C1. In contrast, we observe a large connected area
over Uruguay and northern Argentina, which exhibits strong linkages into C2.
Moreover, we observe linkages from C1 to C2 and vice versa (Figure 6.7B).

3. For SEE, there is only a small connected area in northeastern Argentina which is
linked to C1, while a large connected area extending from Uruguay to the slopes
of the northern Argentinean Andes exhibits linkages into C2 (Figure 6.7C).

4. For SLE, we observe two large regions which have linkages into C1: The mouth
of the Amazon in northeastern Brazil, as well as a region east of the southern
Brazilian coast. In addition to the linkages from southeastern South America
to C2 which have already been found for LLE and SEE, for SLE there is also a
region in northern Peru and southern Colombia which is strongly linked to C2
(Figure 6.7D).

Andean foothills (C2 to C7)

1. For LSE (Figure 6.8A), we do not find any significant linkages into C3 and C4.
C5 shows strong linkages from a large connected area in northern Argentina,
Uruguay and southern Brazil, while for C6, this area is shifted northward to
include Paraguay, southern Bolivia and some parts of the Bolivian part of the
Amazon Basin. For C7, we observe strong linkages from the western Amazon
Basin in Peru and western Brazil.
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Figure 6.6.: A. 90th percentiles of the sizes of connected components of simultaneous events
("cluster sizes") above the 50th percentile of local rainfall distributions confined
to wet times (SEE). The size is measured in km2 and we corrected for the bias
induced by the dependence of grid cell size on latitude. B. 90th percentile of the
size of connected components of simultaneous events above the 90th percentile of
local 15-hour smoothed rainfall distribution confined to wet times (SLE).
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Figure 6.7.: Regional Connectivity of the Altiplano (C1 in blue) and Puna Plateau (C2 in red)
for local and short extreme events (A: LSE), local and long-lasting extreme events
(B: LLE), spatially extensive events (C: SEE), and spatially extensive long-lasting
extreme events (D: SLE). Spatially extensive, long-lasting extreme events (SLE)
on the northern Altiplano Plateau (blue) are primarily connected to the Amazon
Basin, while the southern Puna Plateau (red) is more strongly connected to the
Argentinean plains and La Plata river basin.
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Figure 6.8.: Regional Connectivity of the five mountainous catchments along the eastern Andean
slopes (C3 to C7) for local and short extreme events (A: LSE), local and long-lasting
extreme events (B: LLE), spatially extensive events (C: SEE), and spatially extensive
long-lasting extreme events (D: SLE). In general, extreme rainfall in the northern
Andean catchments (purple) are mostly locally connected, only SEE are influenced
by the western Amazon basin. Tropical northern central Andean catchments (yellow)
are impacted by rainfall events originating from southeastern South America and
the southwestern Amazon Basin; Subtropical southern central Andean catchments
(green) are dominated by rainfall originating from southeastern South America and
propagating westward through the La Plata basin. Subtropical catchments to the
south of the central Andes (red and blue) show only connections to extratropical
regions.

70



6.6. Discussion

2. For LLE (Figure 6.8B), there are strong linkages from central Chile and the
southern Pacific ocean south of 30◦S into C3, while a large connected area
in central Argentina shows strong linkages into C4. C5 has strong linkages
from northern Argentina and Uruguay, while for C6 and C7, we do not find
significant linkages for LLE.

3. For SEE (Figure 6.8C), C3 again exhibits linkages from central Chile and the
adjacent Pacific Ocean, while C4 shows no significant linkages. In contrast,
there are strong linkages from a large area in northern Argentina and Uruguay
to C5. Furthermore, C6 shows strong linkages from a large area in Central
South America, roughly extending between 10◦S and 30◦S and 75◦W and 65◦W.
Strong linkages can be observed from the western Amazon Basin to C7.

4. For SLE (Figure 6.8D), there are no significant linkages into C3 and C4. A
large area comprised of southern Brazil, Uruguay, and northern Argentina is
linked to C5, while a considerably smaller region in northern Argentina, western
Paraguay, and Bolivia exhibits linkages into C6. We do not observe a large
connected area with significant linkages into C7.

6.6. Discussion

6.6.1. Intensity, frequency, and spatial extent of rainfall events

By construction, the four proposed rainfall event types LSE, LLE, SEE, and SLE
occur with varying intensities (Figure 6.2), frequencies (Figure 6.3), and spatial
extents (Figures 6.6A and 6.5B). Therefore, they also play very different roles for
the hydrological budgets of the different mountainous Andean catchments C1 to C7.
Our results indicate that LSE contribute the largest fraction of total DJF rainfall
in the entire considered spatial domain, with percentages of up to 50% in the La
Plata Basin. However, in view of the induced risk of natural hazards, it is crucial
to consider the temporal duration of rainfall. For this purpose, we quantified the
fraction of total DJF rainfall contributed by each single sequence of consecutive
events (“bursts”). For all four event types (Figure 6.5), this revealed a pronounced
latitudinal gradient, with lower contributions in the tropics, and higher contributions
in the sub- and extratropics. Thus, there is a tendency towards low-frequency but
high-magnitude events in subtropical South America. LLE and SLE contribute the
largest fractions of total DJF rainfall per burst, with values close to 20% in northern
Argentina, Uruguay, and Paraguay (Figures 6.5B and 6.5D).

Many studies have analyzed the spatial extensions of spatially connected components
of simultaneous rainfall, and South America is affected by some of the largest of such
rainfall clusters on Earth (Laing and Fritsch, 1997; Zipser et al., 2006). In particular,
mesoscale convective complexes have been found to play a major role for total DJF
rainfall in southeastern South America (Salio et al., 2007; Durkee and Mote, 2009),
but are also important and have potentially disastrous impacts in other parts of
the continent (Zipser et al., 2006). Nevertheless, they occur most frequently and
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attain their largest size in the subtropical regions of northern Argentina and Paraguay
(Durkee et al., 2009), which is consistent with our results for the 90th percentile scores
of rainfall cluster sizes (Figures 6.6A and 6.6B). The hydrological role of the spatial
extents of rainfall clusters can - by definition - not be directly quantified in terms of
local (i.e., per grid cell) contributions to total DJF rainfall, as is also evident from
the comparably low values in (Figure 6.5C). Nevertheless, the spatial extents are very
important for the risk assessment of associated flooding and landsliding (Marengo
et al., 1998; Grimm and Tedeschi, 2009).

6.6.2. Regional Connectivity of Andean Catchments

In view of natural hazards such as flooding and landsliding, we expect severe impacts
of heavy rainfall on the high-elevation Altiplano-Puna Plateau as well as in the main
river catchments along the eastern foothills of the Andean cordillera.

Altiplano-Puna Plateau. On the Altiplano (C1), up to 10% of total DJF rainfall
is contributed by each burst of events of type SLE, which occur less than once per DJF
season. Substantial connectivity of rainfall on the Altiplano to other geographical
regions is only observed for this event type. This indicates that - typically - only these
largest, longest-lasting and most intense rainfall clusters propagate up to the northern
part of the plateau on more than 4km elevation, while the remaining three types of
events do not occur in a spatially connected manner, but are controlled rather locally.
The most pronounced geographical source region for SLE on the Altiplano is located
in northeastern Brazil and extends with lower connectivity westward to the Amazon
Basin. We associate this pattern with Amazonian squall lines (Cohen et al., 1995)
and suggest that the largest of these systems, upon crossing the Amazon Basin, reach
the Andes and propagate up to the Altiplano (Figure 6.7).

As for the Altiplano, LSE in the Puna de Atacama typically occur locally, without
strongly synchronized events at other locations. In strong contrast, rainfall of type
LLE, SEE, and SLE in the Puna de Atacama (C2) is mainly influenced by systems
originating from southeastern South America. We associate this propagation of ex-
treme, long lasting and spatially extensive rainfall from southeastern South America
to the southern part of the Altiplano-Puna Plateau with frontal systems approaching
from the south (P5; P6; Siqueira and Machado, 2004), caused by Rossby-wave activity
in polar latitudes (Hoskins and Ambrizzi, 1993). This propagation pattern is also
related to a subclass of mesoscale convective systems, which propagate in opposite
direction of the low-level moisture flow towards the southern Central Andes (Anabor
et al., 2008). Favorable atmospheric conditions for these propagation patterns are
probably related to so-called cold surges (P5; P6; Garreaud and Wallace, 1998; Gar-
reaud, 2000a). It is remarkable that the frontal systems exhibit such a strong impact
on large areas at elevations above 4km asl. We also note that SLE on the Puna
de Atacama are - in addition to the source region in southeastern South America -
connected to preceding events in northern Peru and Colombia (Figure 6.7).
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Andean foothills. Events of type LSE and SLE at the eastern foothills of the
Andes south of 25◦S (C3 and C4) do not show significant linkages to other geographical
regions. In contrast, LLE and SEE at the eastern slopes of the southern Andes (C3)
are associated with events over the adjacent Pacific Ocean. Extreme rainfall at the
western slopes of the southern Andes can be explained by the interplay of frontal
systems migrating eastward over the southern Pacific and the Andean orography
(Garreaud, 2009). Our results suggest that the frontal influence extends eastward
beyond the Andean mountain range and causes long-lasting (LLE) and spatially
extensive (SEE) rainfall events in these regions (Figure 6.8).

LLE at the southern Central Andean foothills (C4) originate from the Argentinean
lowlands and the adjacent Atlantic Ocean to the east. As in the case of the Puna de
Atacama, we explain this pattern with frontal systems approaching from the south
and migrating northward over South America east of the Andes. The Central Andean
slopes (C5) in northern Argentina and southern Bolivia are strongly impacted by
these frontal systems and associated cold surges, which also influence the formation
and propagation of mesoscale convective systems (P5; P6; Anabor et al., 2008).

For all four event types, we observe large connected geographical source regions
over northern Argentina, Uruguay, and southern Brazil. This is consistent with
results found in the next chapter on the propagation of large rainfall clusters from
southeastern South America towards the Central Andes (P5; P6).

For the northern Central Andean foothills (C6), the influence of frontal systems is
substantially reduced for LLE and SLE, while for LSE and SEE, we still observe large
connected source regions in Bolivia, Paraguay, and northern Argentina. However,
these source regions are shifted northward when compared to the source regions of the
Central Andes and also extend towards the Bolivian and Brazilian Amazon Basin. We
suggest that this pattern may in fact be comprised of different meteorological signals,
including northward migrating frontal systems and southwestward propagating squall-
lines originating from the tropics. The fact that there are no strong linkages for LLE
and SLE suggests that those events at the northern Central Andean foothills which
are caused by these frontal systems and squall-lines on average only attain temporal
durations below 12 hours (the typical time scale of LLE).

In strong contrast to the catchments in the southern and central Andes, the northern
Andean foothills (C7, north of 15◦) do not show any linkage with frontal systems
propagating over subtropical South America. Instead, we find that LSE and SEE
in this area originate from the western Amazon Basin, while LLE and SLE are not
linked to other geographical locations. This suggests that long-ranged linkages of
rainfall at the northern Andean slopes only occur for short-lived events. In contrast,
long-lasting rainfall events in this region occur at more local spatial scales.

6.7. Conclusion

We have analyzed the frequency, duration, spatial extent, and spatial synchronization
structure of 3-hourly rainfall events during the South American monsoon season. For
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this purpose, we have defined four different types of rainfall: (1) events which are
characterized by their high intensity alone; (2) long-lasting and intense events; (3)
spatially extensive events; and (4) intense, long-lasting and spatially extensive events.
We have focussed on the contributions of these events to total seasonal rainfall sums,
but also - in view of potential predictability - their geographical origins over the
South American continent using directed Event Synchronization and constructing
directed networks from it.

Our main findings in this chapter can be summarized as follows: i) The overall
contribution to total monsoon-seasonal rainfall is highest for events of type (1).
However, taking into account the temporal duration of events reveals that large river
catchments in the subtropical Argentinean plains are exposed to rare, long-lasting
episodes of intense and spatially extensive rainfall, each of them contributing up to
20% of total monsoon seasonal rainfall. ii) The high-elevation Altiplano Plateau in
Bolivia and southern Peru is only reached by the largest, longest-lasting and most
intense thunderstorms originating from the eastern Amazon Basin. iii) For extreme
events in the various river catchments along the mountainous Andes, we observe a
clear transition regarding their geographical origin: While in the catchments south of
20◦S, including the Puna Plateau, extreme rainfall originates from frontal systems
approaching from the central Argentinean plains, the catchments north of 20◦S,
including the Altiplano Plateau, are mainly affected by squall lines originating from
the Amazon Basin.
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Chapter 7.

Prediction of Extreme Floods in the
Eastern Central Andes

7.1. Summary

In the previous chapter, we have shown how the directed network approach on the
basis of ESdir can in principle be used to assess the predictability of extreme rainfall
by determining typical geographical source regions for these events. Changing climatic
conditions have led to a significant increase in magnitude and frequency of extreme
rainfall events in the Central Andes of South America. These events are spatially
extensive and often result in substantial natural hazards for population, economy,
and ecology. In this chapter, we develop a general framework to predict extreme
events by introducing the concept of network divergence on directed networks derived
from measuring directed Event Synchronization. Using this framework, we reveal a
linkage between polar and tropical regimes as the mechanism responsible for extreme
rainfall in the Central Andes: the interplay of northward migrating frontal systems
and the Andean topography leads to the opening of a low-level wind channel from
the western Amazon to the subtropics, which provides the moisture for abundant
rainfall. The northward movement of the frontal systems displaces the wind channel,
causing the associated rainfall cluster to migrate from southeastern South America
to the eastern slopes of the Central Andes. On the basis of these insights, we propose
a simple forecast rule, which we apply to real-time satellite-derived rainfall data and
show that it predicts more than 60% (90% during El Niño conditions) of rainfall
events above the 99th percentile in the Central Andes. This chapter is based on the
associated publications P5 and P6, and the following sections will closely follow these
publications. Supplementary figures for this chapter can be found in appendix D.

7.2. Introduction

Prediction of extreme rainfall events is a challenging task and rainfall occurrence in
the eastern Central Andes (ECA) can only be understood in the broader context of
the South American monsoon system (SAMS). As described in section 1.2, a constant
feature of the core monsoon season in South America (December through February,
DJF) is the transport of moist air by low-level trade winds from the tropical Atlantic
Ocean to the Amazon Basin along the Intertropical Convergence Zone (ITCZ, (Vera
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et al., 2006)). However, the strength and direction of the subsequent moisture flow to
the subtropics is subject to considerable variability, as was already noted in chapter
5 in the context of the South American rainfall dipole: Possible exit regions range
from central Argentina to southeastern Brazil. A pronounced southward component
towards the ECA is associated with the South American Low-Level Jet (SALLJ,
(Marengo et al., 2004; Vera et al., 2006)) and a southward extension thereof, the
Chaco Jet (Salio et al., 2002). These circulation regimes, which are partly controlled
by the Northwestern Argentinean and the Chaco Low (Salio et al., 2002; Seluchi
and Saulo, 2003; Saulo et al., 2004), have been put into relation with increased
precipitation in southeastern South America (SESA, (Salio et al., 2007)). Southward-
directed anomalies of the large-scale moisture flow are, however, also associated with
enhanced rainfall in the ECA due to orographic lifting: Increased moisture flux is
forced to rise at the Andean mountain front and leads to pronounced orographic
rainfall (Bookhagen and Strecker, 2008; Romatschke and Houze, 2013).

The cause of the circulation variability and the corresponding rainfall anomalies
has not yet been identified in a way that sufficiently resolves the temporal order
of events (Kiladis and Weickmann, 1992; Lenters and Cook, 1999; Liebmann et al.,
2004; Arraut and Barbosa, 2009). Since this is crucial for predicting associated
extreme rainfall events, an early warning system for extreme rainfall in the ECA has
been lacking. These events lead to severe infrastructural damage with large societal
and economic ramification: For instance in early 2007, natural hazards associated
with intense rainfall events in the ECA affected more than 133.000 households and
produced estimated costs of 443 Mio. USD (Programa de las Naciones Unidas para
el Desarrollo (PNUD), 2011).

In this chapter, we provide all theoretical information necessary to forecast spatially
extensive extreme rainfall at the the ECA. For this purpose, we introduce the concept
of network divergence on directed and weighted networks constructed from ESdir.
This measure is designed to assess the predictability of extreme events in significantly
interrelated time series by determining sinks and sources (of extreme events) on
directed and weighted networks. We present and apply the method with emphasis on
extreme rainfall, but the methodology is more general and can be applied to a wide
class of problems, ranging from climatic extreme event series to neuronal activity or
data from financial markets.

7.3. Data

As in the previous chapter, we employ the remote-sensing derived and gauge-calibrated
rainfall data TRMM 3B42 V7 (Huffman et al., 2007) in the spatial domain 85◦W
to 30◦W and 40◦S to 15◦N, at horizontal resolution of 0.25◦ × 0.25◦, and 3-hourly
temporal resolution for the time period from 1998 to 2012. To test our forecast rule,
we then use the (near) real-time satellite product TRMM 3B42V7 RT (Huffman
et al., 2007) with identical temporal and spatial resolutions for the time period from
2001 to 2013. Geopotential height and wind fields at 850mb as well as Outgoing
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Longwave Radiation were obtained from NASA’s Modern-Era Retrospective Analysis
for Research and Applications (MERRA, (Rienecker et al., 2011)).

Extreme rainfall events are defined as times with rainfall above the 99th percentile
of all DJF seasons, which results in 108 (94) 3-hourly events at each grid cell for the
15 (13)-year rainfall time series of the gauge-calibrated (real-time) version of TRMM
3B42 V7.

7.4. Methods

7.4.1. Network construction

We employ ESdir as defined in equation (2.7) to compute the synchronicity of
extreme events at different grid cells using a maximum delay τmax = 16 time steps,
corresponding to two days. Furthermore, ESdir can be used to compute the average
strength of synchronization of extreme rainfall between geographic regions such as
SESA and ECA as a function of time. This will in the following allow us to identify
times of enhanced synchronization of events in SESA and ECA, which we will use
to determine the responsible atmospheric conditions and, thereby, to formulate a
forecast rule for extreme rainfall in the ECA.

Since all event rates are by construction identical in this chapter, we can determine
a single significance threshold for ESsym for all pairs of event time series: We
construct independent surrogates which preserve the event rate as well as the block
structure of subsequent events. From each original time series (48400 in total), we
construct surrogate time series by uniformly randomly distributing original blocks of
subsequent events in the same way as in chapter 6. Then, we compute ESdir between
all randomized time series and, from the histogram of all these values, determine the
95%-significance level. A directed network link from some node j to another node
i will thus be placed if the corresponding entry of ESdir is above this significance
threshold. In addition, we assign the respective value of ESdir to the corresponding
network link as weight: Aij = ESdir

ij . Such a link from node j to node i indicates
that, typically, extreme events at j occur shortly before they synchronously occur at
i.

The strength of synchronizations into (out of) a grid cell is the sum of weights
of all links pointing to (from) this grid cell, and in order to spatially resolve the
temporal order of extreme events we introduce the measure network divergence ΔS
(cf. equation (3.17) and Figure 7.2A). We recall from chapter 3 the definition of this
measure as the difference of in-strength Sin and out-strength Sout at each grid cell:

ΔSi := Sin
i − Sout

i :=
N∑

j=1
Aij −

N∑
j=1

Aji . (7.1)

Positive values of ΔS indicate sinks of the network: extreme events in these time
series are preceded by extreme events in other time series; negative values indicate
sources: extreme events there are followed by extreme events in other time series.
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In addition to network divergence, in section 3.4.2 we defined the strength into and
out of a region R (Figure 7.2A and 7.2B):

Sin
i (R) = 1

|R|
∑
j∈R

Aji (7.2)

and

Sout
i (R) = 1

|R|
∑
j∈R

Aij . (7.3)

We recall from section 3.4.2 that the strength out of a region R to a node i is given
by the average in-strength of i restricted to the links originating from R and vice
versa. These measures will be used to determine where extremes go to from regions
identified as source regions (negative values of ΔS), or where extreme events in sink
regions (positive values ΔS) originate from.

7.5. Results

7.5.1. Climatic mechanism

During DJF, the spatial distribution of rainfall (see methods section 1 for data
descriptions) is strongly influenced by the interplay of the southward shift of the
ITCZ and the orographic barrier of the Andes (Figure 7.1A), leading to enhanced
precipitation at the eastern Andean slopes, along the South Atlantic Convergence
Zone (Carvalho et al., 2004), and in parts of SESA (Figure 7.1B). There exist strong
spatial gradients in the amount of rainfall accounted for during events above the 99th
percentile (Figure 7.1C). Most notably, very few extreme events (7 per season on
average) account for more than 50% of total DJF rainfall in large parts of subtropical
South America. We observe and corroborate earlier results (Marengo et al., 2009)
that in the ECA, frequency as well as magnitudes of extreme events in DJF have
increased substantially during the past decades (Figures 7.1D, D.1 to D.3).

In order to estimate the dynamics and temporal order of extreme rainfall in South
America, we compute network divergence for the 3-hourly version of the satellite-
derived and gauge-calibrated rainfall dataset TRMM 3B42 V7 (Figure 7.2A). The
NW-to-SE stretching source regions over the Amazon Basin and over the equatorial
Brazilian Atlantic coast can be attributed to Amazonian squall lines (P1; Cohen et al.,
1995). Climatologically, the low-level flow from the Amazon towards the subtropics
follows the band of sinks along the Bolivian Andes, which splits into two branches
close to the Paraguayan border, corresponding to the SALLJ (Marengo et al., 2004)
and the Chaco Jet (Salio et al., 2002), respectively. The most pronounced source
region of the rainfall network is SESA, defined as the box ranging from 35◦S to 30◦S
and 60◦W to 53◦W (Figure 7.1A). In order to investigate where synchronized extreme
events occur within 2 days after extreme events occurred in SESA, we calculated the
spatially averaged ES from SESA to each grid cell (Sout(SESA), Figure 7.2B) and,
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Figure 7.1.: (A) Topography and simplified SAMS mechanisms. (B) 99th percentile of hourly
rainfall during DJF derived from TRMM 3B42V7 (Huffman et al., 2007) in the
spatial domain 85◦W to 30◦W and 40◦S to 15◦N, at horizontal resolution of
0.25◦ × 0.25◦, and 3-hourly temporal resolution. (C) Fraction of total DJF rainfall
accounted for by events above the 99th percentile. (D) Trend lines for the number
of extreme events per DJF season averaged over boxes 6 and 7 in (A): for TRMM
rainfall (108 events in total, green solid line) for the period from 1998 to 2012 and
MERRA outgoing longwave radiation (OLR, (Rienecker et al., 2011)) for the period
from 1979 to 2013 (252 events in total, red solid line) and for comparison for the
period from 1998 to 2012 (red dashed line). Outgoing longwave radiation is used
as a proxy for convective rainfall.
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for comparison, from each grid cell to SESA (Sin(SESA), Figure 7.2C). This analysis
reveals that extreme events in SESA are followed by extreme events along a narrow
band following the eastern Andean slopes up to western Bolivia (Figure 7.2B), while
they are only preceded by extreme events to the southwest (Figure 7.2C). These obser-
vations are consistent with results for Sin(ECA), showing that synchronized extreme
events in the ECA occur within 2 days after they occurred in SESA (Figure D.4).

For certain atmospheric conditions, extreme rainfall in SESA is synchronized with
extreme rainfall in the ECA within the subsequent 2 days. Since ESdir can be used
to identifiy times with high synchronization between these regions, we can determine
the corresponding atmospheric conditions by constructing composites of geopotential
height and wind fields for these times. We use the following framework to identify
times of high synchronization between SESA and ECA: We refer to 3-hourly time steps
for which at least 15 grid cells in SESA (corresponding to an area of ≈ 11, 000km2 or
2% of the SESA area as depicted, e.g., in Figure 7.1A) receive an extreme event as
SESA times. This corresponds to time steps for which the number of extreme events
at SESA is above the 60th percentile, computed on the set of time steps with at least
one event. Furthermore, using the time series of synchronizations between SESA and
ECA, we define SYNC times as time steps for which each grid cell in SESA receives
an extreme event that synchronizes (within 2 days) with extreme events at more
than 4 locations in the ECA. This corresponds to time steps for which the number of
events at SESA that synchronize with one or more events at ECA is above the 80th
percentile. Our results do not depend on small variations of the specific thresholds
used to define SESA and SYNC times.

SESA times that are also SYNC times will be called propagation times, while SESA
times that are not SYNC times will be referred to as non-propagation times (see
Table 1). For the 15 DJF seasons considered here, we obtain 502 propagation times
occurring during 136 connected storm periods of maximal length of 3 days (i.e., 9 per
DJF season), while there are 582 non-propagation times during 164 storm periods.
During propagation times, extreme events propagate along the sequence of a roughly
SE-NW oriented swath profile (white boxes in Figure 7.1A and 7.2A) from SESA
to ECA (Figure 7.2D), i.e., in the opposite direction of the low-level flow from the
Amazon.

For the purpose of recognizing the conditions under which extreme events in SESA
synchronize with extreme events in the ECA, we construct composite anomalies
relative to DJF climatology of geopotential height and wind fields both at 850mb for
propagation times and non-propagation times (Figure 7.3). Geopotential height and
wind fields are derived from NASA’s MERRA dataset (Rienecker et al., 2011).

On the basis of these composites, we identify northward propagating frontal systems
and the associated low-pressure anomalies as common drivers of extreme rainfall in
SESA and the establishment of a low-level wind channel from the Amazon to the
subtropics along the eastern Andean slopes: A low pressure anomaly originating from
Rossby-wave activity propagates northwards, led by a cold front causing abundant
rainfall in SESA through the uplifting of warmer air masses (Kiladis and Weickmann,
1992; Hoskins and Ambrizzi, 1993; Lenters and Cook, 1999; Seluchi and Garreaud,
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Figure 7.2.: (A) Network divergence, defined as the difference of In-Strength and Out-Strength at
each grid cell, ΔSi := Sin

i − Sout
i . Positive values indicate sinks of the directed and

weighted network, which are interpreted as locations where synchronized extreme
rainfall occurs within 2 days after it occurred at several other locations. On the other
hand, negative values indicate sources, i.e. locations where synchronized rainfall
occurs within 2 days before it occurs at several other locations. (B) Strength out
of SESA, Sout

i (SESA), which is the average in-strength restricted to SESA (see
methods section). Note in particular the high values along ECA. (C) Strength into
SESA, Sin

i (SESA), which is the average out-strength restricted to SESA. Note
in particular that there are no high values along ECA. (D) Temporal evolution of
extreme rainfall events from SESA to ECA along the sequence of boxes indicated in
(A)). Composite rainfall amounts (left) and number of extreme events (right) in the
respective boxes between SESA and ECA are displayed for propagation times and
the subsequent 48 hours. Each box has an edge length of 3◦ (≈ 333km), resulting
in a total distance of ≈ 2000km.
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Times Condition Occurrences
SESA # extreme events in

SESA ≥ 60th percentile 1084
SYNC # synchronizations between

SESA and ECA ≥ 80th percentile 518
Propagation SESA & SYNC 502

Non-Propagation SESA & NOT SYNC 582
Prediction SESA & GPH 649

Table 7.1.: Different conditions used to determine the climatic mechanism and to formulate
the forecast rule. GPH refers to the condition that the average geopotential height
anomaly in the white polygon in Figure 7.3 is below −10m.

Figure 7.3.: (A) Composite anomalies relative to DJF climatology of 850mb geopotential height
and wind fields from NASA’s Modern-Era Retrospective Analysis for Research and
Applications (MERRA, (Rienecker et al., 2011)) for propagation times. Temporal
resolution is 3-hourly, spatial resolution is 1.25◦ × 1.25◦. (B) The same composite
anomalies as for (A), but for non-propagation times.
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2006). When the frontal system propagates from SESA northeastward through the La
Plata Basin in northeastern Argentina, the low-pressure anomaly extends to central
Bolivia and merges with the Northwestern Argentinean Low (Seluchi and Saulo, 2003;
Arraut and Barbosa, 2009) (Figure 7.3A). This leads to the opening of a geostrophic
wind channel along the resulting isobars that was previously blocked by the Andes
Cordillera. This channel acts as a conveyor belt and transports warm and moist
air from the Amazon Basin along the eastern slopes of the Andes and collides with
the cold air carried by the frontal system. In combination with orographic lifting
effects, this leads to extreme rainfall in the ECA within 2 days of the initial rainfall
in SESA. The enhanced moisture flow to SESA after the initiation of rainfall can be
assumed to be further stabilized by the release of latent heat (Vera, 2002; Seluchi and
Saulo, 2003). With the cold front moving north, the flow will change its direction
accordingly. A comparison with (Anabor et al., 2008) suggests that this climatic
regime may be associated with Mesoscale Convective Systems (Salio et al., 2007),
which are formed over SESA and propagate upstream. Similar features have also
been described in the context of so-called cold surges: northward incursions of cold
air from midlatitudes (Garreaud and Wallace, 1998; Garreaud, 2000a).

7.5.2. Extreme event forecast

Typically, rainfall events propagate from SESA to the ECA within the first day after
the initial event in SESA (Figure 7.2D), with an average speed of ≈ 80km/h. These
results can be used to establish an operational warning system of floods in the ECA.
We employ the 3-hourly real-time satellite product TRMM 3B42V7 RT (Huffman et
al., 2007) for the time period from 2001 to 2013. In order to forecast extreme rainfall
events in the ECA, we define prediction times as SESA-times with a low-pressure
anomaly in northwestern Argentina (geopotential height anomalies less than −10m
in white polygon in Figure 7.3A; this condition is abbreviated as GPH in table 1).
There are in total 649 such prediction times, occurring during 139 connected periods,
resulting in an average of 10 such periods per season. The rainstorms associated with
these events are likely to lead to severe floods and landslides downstream (Programa de
las Naciones Unidas para el Desarrollo (PNUD), 2011; Bookhagen and Strecker, 2012)
because of their large spatial extent combined with little to no rainfall infiltration at
high elevations: During the 2 days following prediction times, about 1/4 of each of
the 4 boxes comprising ECA (boxes 4 to 7 in Figure 7.1A) receives an extreme event,
corresponding to about 28, 000km2 (Figure D.5). In particular, in the northern part
of ECA (box 7 in Figure 7.1), extreme events propagate to high elevations: In the
northernmost box 7, at altitudes higher than 3000m above sea level, still about 60%
(80% during positive El Niño Southern Oscillation (ENSO) phases) of all extreme
events occur during prediction times (Figures D.6 and D.7).

For the TRMM3B42V7 RT dataset, more than 60% of all extreme events and
of total DJF rainfall occur in the ECA during the 48 hours following prediction
times (Figures D.8 and D.9). During positive ENSO phases, they account for more
than 90% of extreme rainfall events and more than 80% of total DJF rainfall in the
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observed not observed marginal
forecasted a b a+b

not forecasted c d c+d
marginal a+c b+d n=a+b+c+d

Table 7.2.: Contingency table used for computing the Heidke-Skill-Score (HSS).

Value all years positive ENSO
a 318 98
b 331 104
c 292 18
d 8419 1220

Table 7.3.: The specific values of a, b, c, and d used to compute the HSS of the forecast rule.

northern parts of the ECA as well as on parts of the Bolivian Altiplano (Figures D.10
and D.11). In order to take into account the spatial extension of extreme rainfall, we
formulate our forecast rule as follows: Whenever the conditions of prediction times
are fulfilled, there will be at least 100 events above the 99th percentile during the
following 2 days in at least one of the ECA boxes (white boxes 4 to 7 in Figure 7.2A).
Note that the corresponding average number of extreme events within such two-day
periods is 50.

7.5.3. Prediction Skill

In order to assess the skill of this simple forecast rule, we employ the Heidke-Skill-
Score (HSS, (Wilks, 2006)). Given the separations between forecasted and observed
events indicated in Table 7.5.3, it is defined as

HSS = 2(ad − bc)
(a + c)(c + d) + (a + b)(b + d) (7.4)

for a skill-comparison versus randomness. This score yields HSS = 0 for a uniformly
random forecast, and HSS = 1 for a perfect forecast. Applying our forecast rule to
the 3-hourly forecast dataset (TRMM 3B42V7 RT), we find the values summarized
in Table 7.5.3 for the time period 2001 to 2013.

For our forecast rule, we obtain HSS = 0.47 when computed for all times during
the DJF seasons between 2001 and 2013. We recall, however, that the considered
climatic regime is only responsible for 60% of extreme events in the ECA. This implies
that the remaining 40% can by construction not be predicted by our forecast rule, and
the HSS is accordingly reduced. Moreover, the forecast skill certainly depends on the
specific choice of the spatial boxes 4 to 7 and may change by adjusting their position.
For positive ENSO conditions, we obtain HSS = 0.57. The HSS is rather insensitive
to variations of the condition on the number of extreme events in SESA and the
exact geopotential height anomaly in northwestern Argentina, while it decreases
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rapidly for more events to be predicted in the ECA (Figures D.12 and D.13). We
note that, while the mechanism responsible for these extreme rainfall events in the
ECA was uncovered using network divergence, the conditions used for the forecast
rule can be determined directly and with little computational efforts by spatially
averaging rainfall and geopotential height data. We emphasize that we did not train
the proposed forecast rule in the sense of parameter optimization. Instead, the rule
is derived directly from the results of the network divergence analysis and we show
that its forecast skill does not change rapidly when changing the conditions used to
define prediction times.

7.6. Discussion

Our results provide all information necessary to implement an operational forecast
system of extreme rainfall events in the ECA. It is very unlikely that previous state-
of-the-art weather forecast models could predict these events: First, the propagation
pattern only appears for very high event thresholds (97th percentile or higher, see
Figure D.14), and this “heavy tail” of the rainfall distribution is not well implemented
in current weather forecast models (see, e.g., (Jones et al., 2011) and citations
therein). Second, for the regional climate model ETA, which is used at the Center
for Weather Forecasting and Climate Research (CPTEC) for operational weather
forecast in South America, we compared the synchronization strength of SESA to
the pattern found for TRMM and conclude that this model does not reproduce the
propagation of extreme events from SESA to ECA (Figure D.15). Furthermore, while
the climatological phenomenon of cold surges has already been described in other
studies (e.g. by Garreaud and Wallace, 1998; Garreaud, 2000a), only the usage of the
high-spatiotemporal satellite product TRMM 3B42 allows to uncover the propagation
of extreme events from SESA to ECA. This mechanism could not be found on the
basis of reanalysis data such as the European Centre for Medium-Range Weather
Forecasts Interim Reanalysis or NASA’s MERRA precipitation product (Figure D.15).

In appendix D, we show composites of rainfall, geopotential height and wind fields
for times when extreme rainfall propagates from SESA to ECA (Figure D.16), from
12 hours before to 30 hours after rainfall peaks in SESA.

7.7. Conclusion

We have defined the measure network divergence on directed and weighted graphs,
and have proposed a general framework to predict extreme events in large, interactive
systems. Applying network divergence to high-spatiotemporal resolution rainfall
data identified a climatic mechanism that allows to predict more than 60% (90%
during positive ENSO conditions) of rainfall events above the 99th percentile in the
ECA from two conditions: Preceding extreme rainfall at SESA and the presence of
a low-pressure anomaly in northwestern Argentina. The forecast rule we developed
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can thus be implemented with little computational efforts on the basis of spatially
averaged rainfall and pressure measurements.
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Chapter 8.

Dataset and Model Intercomparison

8.1. Summary

Based on the methodological and climatological insights gained in the previous
chapters, we now compare six different rainfall datasets for South America with a
focus on their representation of extreme rainfall during the monsoon season (December
to February): The gauge-calibrated satellite product TRMM 3B42 V7, the (near)
real-time version TRMM 3B42 V7 RT, the satellite-gauge combination product
GPCP 1DD V1.2, the ECMWF model-derived reanalysis product ERA-interim, as
well as output of a high spatial resolution run of the ECHAM6 global circulation
model, and output of the regional climate model ETA. For the latter three, this
comparison can also be understood as a model evaluation. In addition to statistical
values of local rainfall distributions, we focus on the spatial characteristics of extreme
rainfall co-variability using symmetric Event Synchronization (ESsym) and several
of the network measures introduced in the previous chapters. This way, we uncover
substantial differences in extreme rainfall patterns between the different datasets:
i) The three model-derived datasets yield very different results compared to the
satellite-gauge combinations regarding the main climatological propagation pathways
of extreme events as well as the main convergence zones of the monsoon system. ii)
Large discrepancies are found for the development of mesoscale convective systems
in southeastern South America. iii) Both TRMM datasets and ECHAM6 indicate a
linkage of extreme rainfall events between the central Amazon Basin and the eastern
slopes of the central Andes, but this pattern is not reproduced by the remaining
datasets. Our results suggest that none of the three model-derived datasets adequately
capture extreme rainfall patterns in South America. This chapter is based on the
associated publication P7, and some of the following sections will closely follow parts
of this publication.

8.2. Introduction

Extreme rainfall plays a crucial role for the hydrological cycle in large parts of South
America. In the subtropics, events above the 90th percentile account for more than
50% of total rainfall during the core monsoon season from December to February (see
Figure 7.1 in the previous chapter, but also Figure 8.5 in this chapter). As shown
in chapter 6, considerable contributions are made by Mesoscale Convective Systems
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(MCS), in particular in northern Argentina, Paraguay, and southern Brazil (Zipser
et al., 2006; Salio et al., 2007). But apart from their role for the overall water budget,
understanding extreme rainfall events and their synchronization is important because
of the associated natural hazards. For example, extreme rainfall frequently triggers
landslides and flash floods, in particular along the eastern slopes of the Andes (see
chapters 6 and 7, but also (P4; P5; P6; Schuster et al., 2002; Coppus and Imeson,
2002; O’Hare and Rivas, 2005; Moreiras, 2005b)), but as well in urban areas in
southeastern South America (Marengo et al., 2013b).

The far-reaching impacts of extreme rainfall events call for a better understanding of
how their frequency, magnitude, and spatial co-variability are represented by different
datasets. Furthermore, in order to obtain a sound assessment of future extreme
rainfall development, it is crucial to evaluate climate models with respect to their
performance in reproducing observed spatiotemporal characteristics of extreme rainfall.
The representation of extreme events in a dataset or model is usually only assessed
by investigating local rainfall distributions and in particular the behavior of their
respective tails. Because of their outstanding hydrological, but also societal relevance,
a detailed investigation of the implementation of extreme events in different datasets
and climate models, with particular focus on their spatiotemporal interrelations, is
needed.

In this chapter, we compare the representation of extreme rainfall events between
three gridded observational, as well as three gridded model-derived datasets for South
America: the satellite-gauge combined TRMM 3B42 V7, the corresponding real-
time product TRMM 3B42 V7 RT, which is not gauge adjusted, the gauge-satellite
combined product GPCP, the model-derived reanalysis data from the European
Centre for Medium-Range Weather Forecasts (ERA-interim), as well as high-spatial
resolution data obtained from the global circulation model ECHAM6, and from the
ETA regional climate model.

Several previous studies have analyzed rainfall variability in the South American
monsoon system (SAMS), but only a few studies have compared different rainfall
datasets in South America: Matsuyama et al. (2002) have analyzed the Climate
Prediction Center merged analysis of precipitation, and more recently Negrón Juárez
et al. (2009) have compared satellite and gauge products over the Amazon Basin, while
Silva et al. (2011) evaluated different reanalysis products over the entire continent.
Carvalho et al. (2012) provide a comparison of station based, satellite derived, and
reanalysis data with a focus on daily gridded precipitation (see also references therein).
A specific analysis of the implementation of rainfall processes over tropical South
America in CMIP5 was recently carried out by Yin et al. (2013). Typically, these
studies use principal component analysis (PCA) in order to investigate the spatial
characteristics of rainfall co-variability in terms of empirical orthogonal functions
(EOFs). However, for the reasons explained in the introductory chapter 1, PCA-based
techniques are not suitable to analyze the spatial patterns of co-variability of extreme
rainfall.

In chapters 4 and 5, as well as the associated publication P1 and P2, the combination
of ESsym and undirected networks was applied to the TRMM 3B42 V7 dataset
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in order to investigate the spatial structure of synchronicity of extreme rainfall
events in the SAMS. This dataset has been concluded to provide a reasonably good
representation of rainfall variability in different regions (Xue et al., 2013; Chen et al.,
2013), but particularly in South America (Carvalho et al., 2012; Zulkafli et al., 2014).
Here, we apply the same methodology and compare results for TRMM 3B42 V7
to corresponding results for the two other observational as well as for the three
model-derived datasets. TRMM 3B42 V7 will thus serve as a reference dataset in
this chapter.

8.3. Data

We employ six different daily rainfall datasets:

1. TRMM: the research grade Tropical Rainfall Measurement Mission gauge-
calibrated satellite product (TRMM 3B42 V7) at 3-hourly temporal and 0.25◦ ×
0.25◦ spatial resolutions (Huffman et al., 2007), available from 1998 to 2013.

2. TRMM RT: the (near) real-time Tropical Rainfall Measurement Mission satellite
product (TRMM 3B42 V7 RT) at 3-hourly temporal and 0.25◦ × 0.25◦ spatial
resolutions (Huffman et al., 2007), available from 2001 to 2013.

3. GPCP: the Global Precipitation Climatology Project (GPCP 1DD V1.2), a
satellite-gauge combination at daily temporal and 1.0◦ × 1.0◦ spatial resolutions
(Huffman et al., 2001), available from 1996 to 2013.

4. ERA: the European Centre for Medium-Range Weather Forecasts Interim
Reanalysis (ERA-interim) product with daily temporal and 0.75◦ ×0.75◦ spatial
resolutions, available from 1979 to 2013 (Dee et al., 2011).

5. ECHAM6: A standard AMIP simulation for the time period 1998 to 2008
(forced by the boundary conditions specified for CMIP5) carried out with the
ECHAM6 model (Stevens et al., 2013) at 6-hourly temporal resolution and
horizontal resolution of T255 (ca. 50 km) with 95 vertical levels. This simulation,
which is carried out within the German consortium project STORM, is described
in (“Effect of horizontal resolution on ECHAM6-AMIP performance”).

6. ETA: output from the regional climate model ETA (Mesinger et al., 2012)
provided by the Centro de Previsão de Tempo e Estudos Climáticos (CPTEC)
driven by ERA-interim. The original temporal resolution of this model run
is 6-hourly, and native horizontal resolution is 50km × 50km with 38 vertical
levels. The run covers the period from 1990 to 2008 (Solman et al., 2013;
Marengo et al., 2013a).

For all datasets, we focussed on daily values of the DJF seasons confined to the
spatial domain from 85◦W to 30◦W and 40◦S to 5◦S (see Figure 8.1). TRMM and
TRMM RT are first compared on their native 0.25◦ × 0.25◦ grid for the time period
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Figure 8.1.: Topography of South America and important atmospheric features of the South
American Monsoon System (SAMS).

2001 to 2012. The GPCP product is compared to TRMM for the period 1998 to 2008
at its native resolution of 1.0◦ × 1.0◦ after a bilinear interpolation of the TRMM data
to this resolution. All other comparisons are carried out for the common time period
from 1998 to 2008, with all datasets bi-linearly interpolated to a common spatial
resolution of 0.75◦ × 0.75◦.

8.4. Methods

Our dataset comparison consists of two steps: First, we analyze and compare local
rainfall distributions and several traditional statistical values with a focus on the
tail behavior of the distributions. Second, we investigate the spatial synchronicity
structure of strong, extreme, and most extreme rainfall events. For the time period
1998 to 2008, we define these events as the top 200, top 100, and top 50 events at
each location, corresponding to events above the 80th, 90th, and 95th percentile of
the 11 DJF seasons, respectively: For strong events (above 80th percentile) we have:
0.2 × 11years ×92days = 202 events, for extreme events (above 90th percentile) we
have 0.1×11years ×92days = 101 events, and for the most extreme events (above the
95th percentile) we obtain 0.05 × 11years ×92days = 51 events. For the comparison
between TRMM and TRMM RT, we have 12 DJF seasons (2001 to 2012), which
results in the top 216, 108, and 54 events at each grid cell. Locations with less than
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the respective number of events are discarded from the analysis. Previous studies
have demonstrated that TRMM 3B42 V7 performs very well in reproducing the main
spatial patterns of the SAMS (see also chapter 4) and found overall good agreement
between TRMM and GPCP (Carvalho et al., 2012).

To measure synchronicity of extreme events at different grid cells we employ ESsym,
here with a maximum delay of τmax = ±5 days. It should be emphasized that, despite
the relatively large τmax, ESsym only counts uniquely associable events within this
time range. All pairs of grid cells for which the value of ESsym is among the top
2% of all values will be represented by a network link. This link density of 2% is
chosen such that all links correspond to significant values of ESsym at a significance
level of 5%. Significance is tested against a null model based on a uniformly random
placement of events as in chapter 4. We will employ the following network measures
in this chapter:

• Degree (DG): By simply counting the number of other grid cells with syn-
chronous extreme events, DG assesses the importance of a grid cell for the
distribution of extreme events to other locations.

• Betweenness Centrality (BC): This measure estimates the importance of a grid
cell for the long-ranged, directed propagation of extreme events. For TRMM,
regions with high BC values have been found in the ITCZ, over the Amazon
Basin as well as along the eastern slopes of the Andes in the vicinity of the
SALLJ (cf. chapter 4 and the associated publication P1).

• Clustering coefficient (CC): This measure estimates the spatial coherence of the
occurrence of extreme events. High values have been observed in regions with
frequent development of MCS (cf. chapter 4 and the associated publication
P1).

• Regional Connectivity (RC): This measure can be used to assess where extreme
events occur synchronously with events in a given region under consideration.
We will focus on the central Amazon Basin as well as SESA and SACZ (Figure
8.1).

8.5. Results and Discussion

As noted above, several studies have concluded that TRMM 3B42 V7 provides reliable
estimates of rainfall variability (Xue et al., 2013; Chen et al., 2013; Carvalho et al.,
2012; Zulkafli et al., 2014). We will therefore consider the results for the TRMM
dataset as a reference and discuss deviations from these results for the other five
datasets.
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8.5.1. Statistical values of rainfall distributions

Mean daily rainfall

Mean daily rainfall rates (Figure 8.2) show considerable differences between the
spatial distribution exhibited by TRMM and the remaining five datasets. For TRMM,
we observe high values at the ITCZ, over the Amazon Basin, along the SACZ, near
the Colombian Pacific coast as well as at the eastern slopes of the Peruvian and
Bolivian Andes.

The TRMM RT dataset shows a very similar spatial distribution, but at the eastern
slopes of the Peruvian and Bolivian Andes, mean daily rainfall values are up to
5mm/day higher. The GPCP dataset shows slightly lower values than TRMM in the
ITCZ as well as at the eastern slopes of the Peruvian and Bolivian Andes, but is
otherwise in good agreement with TRMM.

In contrast, the model-derived datasets (ERA, ECHAM6, and ETA) deviate
substantially from TRMM. ERA mean daily rainfall values are higher in the eastern
Amazon Basin, but lower in the western part of the basin as well as along the SACZ.
Furthermore, rainfall values at the eastern slopes of the Argentinean Andes are much
higher than for TRMM.

The mean daily values of ECHAM6 are higher than TRMM in the western Amazon
Basin and along the eastern slopes of the Andes in northern Argentina and southern
Bolivia, but diminished at the climatological position of the SACZ. East of 40◦W,
over the subtropical Atlantic Ocean, there is a band of slightly higher values than for
TRMM in this region.

ETA mean daily values are lower than for TRMM in the entire Amazon Basin,
along the SACZ, in most of SESA, in western Colombia as well as in northeastern
Brazil. On the other hand, values are higher than for TRMM at the eastern slopes of
the Ecuadorian Andes.

90th and 95th percentiles of daily rainfall

For TRMM, scores at the 90th percentile (Figure8.3) follow a very similar spatial
distribution as the mean values. For all five remaining datasets, the deviations from
TRMM’s spatial distribution at the 90th percentile scores are qualitatively similar to
the deviations observed for mean daily rainfall, however with higher differences in
absolute terms. TRMM RT overestimates 90th percentiles at the eastern Andean
slopes of Bolivia and Peru, while GPCP underestimates 90th percentiles in this region.
Apart from additional discrepancies between TRMM and GPCP over the ITCZ, the
observational datasets (TRMM RT and GPCP) are still the ones with best agreement
with TRMM.

Compared to TRMM, the model-derived datasets show substantial deviations:
ERA exhibits lower values than TRMM in the ITCZ, the entire Amazon Basin, and
the SACZ. Meanwhile, we observe strongly overestimated rainfall scores at the eastern
slopes and high-elevation regions of the central and southern Andes. The ECHAM6
model performs well in reproducing TRMM’s spatial distribution of extreme scores in
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Figure 8.2.: Mean daily rainfall during DJF for TRMM 3B42 V7 at 0.25◦ (A), 1◦ (C), and 0.75◦

(E) spatial resolution; Differences with respect to TRMM 3B42 V7 for TRMM 3B42
V7 RT (B), GPCP 1DD V1.2 (D), ERA-interim (F), ECHAM6 (G), and ETA (H).
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the western and central Amazon Basin, while values are too high along the ITCZ and
too low in the eastern Amazon Basin and along the continental part of the SACZ.
Rainfall scores are strongly overestimated along the entire Andes mountain range. In
contrast, the ETA model reproduces the values obtained for TRMM reasonably well
in the SACZ, but not in the Amazon Basin, northeastern Brazil, and in SESA, where
values are too low. For all six datasets, the spatial distribution (but not the absolute
values) of 95th percentile scores (Figure8.4) resembles that of the 90th percentile, the
exception being locally higher scores in northeastern Argentina and southern Brazil
for TRMM, TRMM RT, GPCP, and ECHAM6, but not for ERA and ETA.

Fractions of total seasonal rainfall

The fraction of total DJF rainfall accounted for by events above the 90th percentile
(Figure8.5) shows a pronounced gradient from the tropics to the subtropics for all six
datasets. For TRMM and TRMM RT, more than 70% of total DJF rainfall is caused
by these events in large parts of South America south of 20◦S, while they account for
about 50% in the Amazon Basin and in the vicinity of the SACZ. For GPCP, we find
only very small deviations from TRMM over the South American continent, while
values are considerably lower over the Atlantic Ocean north of the equator and south
of 20◦. These fractions are smaller for the ERA dataset, with 40 − 80% in southern
South America and less than 30% in the Amazon Basin and along the SACZ. For
ECHAM6, fractions are closer to the fractions found for TRMM, with 30 − 60% in
the Amazon Basin and at the SACZ and 60 − 80% further south. The ETA model
produces values between the fractions found for ERA and ECHAM6. The spatial
pattern for all six datasets is remarkably similar. We note that fractions accounted
for by events above the 95th percentile have a very similar spatial distribution as
fractions for events above the 90th percentile, with, of course, reduced values (not
shown).

The fact that the model-derived datasets (ERA, ECHAM6, and ETA) show lower
values in SESA indicates that the models fail to reproduce the low-frequency and
high-magnitude characteristics found for the observational datasets (TRMM, TRMM
RT, and GPCP) in this region. Furthermore, the above mentioned latitudinal gradient
is less pronounced for the three model-derived datasets.

Difference between 90th and 50th percentiles

The difference between local scores at the 90th and at the 50th percentile (Figure 8.6)
yield a relatively simple estimate of the tail behavior of the local rainfall distributions
at each grid point. For TRMM, we observe high values in the ITCZ and the northern
Brazilian coast, at the Colombian Pacific coast as well as at the eastern slopes of the
Central Andes in Peru and Bolivia. Intermediate values can be found in the Amazon
Basin and the adjacent SACZ. Again, TRMM RT has higher values than TRMM
at the eastern slopes of the central Andes, but is otherwise in good agreement with
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Figure 8.3.: Scores at the 90th percentile of daily rainfall during DJF for TRMM 3B42 V7 at
0.25◦ (A), 1◦ (C), and 0.75◦ (E) spatial resolution; Differences with respect to
TRMM 3B42 V7 for TRMM 3B42 V7 RT (B), GPCP 1DD V1.2 (D), ERA-interim
(F), ECHAM6 (G), and ETA (H).
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Figure 8.4.: Scores at the 95th percentile of daily rainfall during DJF for TRMM 3B42 V7 (at
0.25◦ (A), 1◦ (C), and 0.75◦ (E) spatial resolution; Differences with respect to
TRMM 3B42 V7 for TRMM 3B42 V7 RT (B), GPCP 1DD V1.2 (D), ERA-interim
(F), ECHAM6 (G), and ETA (H).
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Figure 8.5.: Fraction of total DJF rainfall accounted for by events above the 90th percentile
of daily rainfall for TRMM 3B42 V7 at 0.25◦ (A), 1◦ (C), and 0.75◦ (E) spatial
resolution; Differences with respect to TRMM 3B42 V7 for TRMM 3B42 V7 RT
(B), GPCP 1DD V1.2 (D), ERA-interim (F), ECHAM6 (G), and ETA (H).
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TRMM. The GPCP dataset exhibits lower values than TRMM in the ITCZ and at
the eastern central Andean slopes, but is otherwise also in good agreement.

The model-derived datasets perform rather poorly in reproducing the values found
for TRMM. Most notably, they strongly underestimate the distributions’ tails in the
entire Amazon Basin. For ERA, values are lower than for TRMM, with locally higher
values only at the Colombian Pacific coast and the eastern slopes of the Argentinean
Andes. In the entire Amazon Basin and the SACZ, values are strongly reduced
as compared to TRMM (values < 10mm/day instead of between 15mm/day and
25mm/day). For ECHAM6, values are higher than for ERA but still lower than for
TRMM in the Amazon Basin and the continental part of the SACZ. At the ITCZ and
the adjacent coast, but also at the eastern slopes of the Peruvian and Bolivian Andes,
values are close to the values found for TRMM. However, values are too high at the
northern Argentinean Andes. The ETA dataset exhibits lower values than TRMM in
the Amazon Basin, but higher values in some eastern parts of the continental SACZ.

Differences between 95th and 90th percentiles

In order to assess the different datasets’ behavior for the most extreme events, we
computed the difference between scores at the 95 and the 90th percentile (Figure8.7).
For the TRMM dataset, the difference between scores at the 95th and 90th percentile
exhibits high values in the ITCZ and the coastal areas around the equator, at the
Colombian Pacific coast, and at the eastern slopes of the Peruvian and Bolivian Andes.
Furthermore, high values can be observed in northern and northeastern Argentina
as well as in the oceanic part of the SACZ. Meanwhile, the continental part of the
SACZ does not show a particularly high difference between the 95th and the 90th
percentile. In large parts of the continent, TRMM RT shows higher values than
TRMM, in particular in the Bolivian Andes, in northern Argentina, Paraguay, and
southern Brazil. GPCP is in fair agreement with TRMM, apart from underestimated
values at the ITCZ and the eastern central Andes. However, rather large differences
from TRMM can be observed over the ocean (in particular over the Atlantic Ocean
south of 20◦), where no rain gauge data are available.

For the ERA dataset, difference between scores at the 95th and 90th percentile
exhibit lower values than for the TRMM dataset over the entire continent, except
for the western slopes of the Colombian Andes and the eastern slopes of the eastern
slopes of the Bolivian and Argentinean Andes, where values are locally high. The
ECHAM6 model data show high values over the ITCZ, the Colombian Pacific coast,
the eastern Andes from Peru to Argentina as well as over the subtropical Atlantic
Ocean east of 40◦W. For ETA, we observe high values over the ITCZ and the oceanic
part of the SACZ comparable to TRMM. However, in the remainder of the continent
values are lower than for TRMM, in particular, the high values in northwestern
Argentina are not well reproduced by the ETA model.

High values for the observational datasets (TRMM, TRMM RT, and GPCP) in
northeastern Argentina can be identified with the development of MCS in this region
(Durkee et al., 2009), which are thus responsible for the most extreme rainfall events.
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Figure 8.6.: Difference between scores at the 90th and the 50th percentile (90th percentile -
50th percentile) of daily rainfall during DJF for TRMM 3B42 V7 at 0.25◦ (A), 1◦

(C), and 0.75◦ (E) spatial resolution; Differences with respect to TRMM 3B42 V7
for TRMM 3B42 V7 RT (B), GPCP 1DD V1.2 (D), ERA-interim (F), ECHAM6
(G), and ETA (H).
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Figure 8.7.: Difference between scores at the 95th and the 90th percentile (95th percentile -
90th percentile) of daily rainfall during DJF for TRMM 3B42 V7 at 0.25◦ (A), 1◦

(C), and 0.75◦ (E) spatial resolution; Differences with respect to TRMM 3B42 V7
for TRMM 3B42 V7 RT (B), GPCP 1DD V1.2 (D), ERA-interim (F), ECHAM6
(G), and ETA (H).
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None of the three model-derived datasets feature a particularly heavy tail of the
rainfall distribution in this area, suggesting that all of them fail to reproduce the
most extreme rainfall events originating from the MCS.

The strongest orographic rainfall peaks at the eastern flanks of the Peruvian and
Bolivian Andes (Bookhagen and Strecker, 2008) are overestimated by TRMM RT,
ERA, and ECHAM6, but underestimated by GPCP and ETA.

Regional characteristics of rainfall distributions

For the spatial boxes denoted by CAB, SALLJ, MCS, SESA, SACZ, and ITCZ in
Figure 8.1, we computed the 50th to 95th percentiles (in steps of 5) of the respective
rainfall distributions (Figure 8.8, left panel) and the difference of each dataset from
the reference TRMM dataset (Figure 8.8, right panel).

CAB. In the CAB, the TRMM RT dataset shows small positive deviations for the
highest percentiles, while we observe small positive deviations for GPCP in particular
for lower percentiles. In contrast, with increasing percentiles, ERA and ETA show
increasing negative deviations. Underestimation of rainfall over the central Amazon
by a collection of regional models (including ETA) was also observed by Solman et al.
(2013). The ECHAM6 model, in contrast, overestimates daily rainfall scores up to
the 80th percentile in this region, but underestimates the 95th percentile score.

SALLJ. In the vicinity of the SALLJ east of the central Andes, TRMM RT
shows considerable positive deviations only for the 90th and 95th percentile, and
overall good agreement with TRMM for the remaining percentiles. GPCP scores are
close to TRMM scores on the entire domain from the 50th to the 95th percentile.
ERA and ECHAM6 show strong positive deviations from TRMM for the entire
domain. However, deviations for ERA become small for high percentiles, while for
ECHAM6, differences increase up to the 90th percentile. This overestimation of
orographic rainfall, in particular at the eastern slopes of the Andes, is a well-known
problem shared by most global and regional circulation models (Urrutia and Vuille,
2009; Solman et al., 2013). In contrast, the ETA model produces values close to
TRMM up to the 85th percentile; for higher percentiles the scores are lower than for
TRMM. The ETA model thus performs better than ERA and ECHAM6 over this
mountainous region for the lower percentiles of the distribution, probably due to the
step-like representation of mountains in its vertical coordinate system (the so-called
eta coordinate) (Mesinger, 1984; Mesinger and Black, 1992; Pesquero et al., 2009).
Still, the 90th and 95th percentiles are underestimated by ETA when compared to
TRMM.

MCS. In the MCS region in subtropical South America, TRMM RT and GPCP
are in good agreement with TRMM for all percentiles in this region. ERA, ECHAM6,
and ETA exhibit higher scores than TRMM up to the 85th percentile, and negative
deviations for the 90th and 95th percentile. However, ECHAM6 remains close to
TRMM, while ERA and ETA deviate strongly for the 95th percentile. Problems
to implement the particularly strong cyclogenetic activity in this region have been
observed for a number of global and regional models (Solman et al., 2007; Chou et al.,
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Figure 8.8.: Left panel: Logarithmic rainfall distributions averaged for the Amazon, the SALLJ
region, the MCS region, SESA, SACZ, and the ITCZ (see Figure 8.1 for definitions
of these regions). Vertical lines denote median (solid), 90th percentile (dashed),
and 95th percentile (dot-dashed) scores of the respective distributions. Right panel:
Percentile score differences with respect to TRMM 3B42 V7 for the same regions.
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2011; Solman et al., 2013). Our results here suggest that these deficiencies are mainly
due to the underestimation of the most extreme events.

SESA. Due to considerable spatial overlap, it is little surprising that for SESA,
we observe a similar behavior as for the MCS region. However, discrepancies are
smaller up to the 85th percentile and larger for the 90th and 95th percentile than for
the latter region.

SACZ. In the SACZ region, values agree fairly well between TRMM, TRMM RT,
GPCP, and ETA. The good performance of the ETA model in reproducing rainfall in
this area was also observed by Solman et al. (2013). For higher percentiles, ERA and
ECHAM6 show considerable negative deviations from TRMM, indicating that these
two model-derived datasets fail to reproduce strong and extreme precipitation in the
SACZ region.

ITCZ. Over the Atlantic ITCZ, TRMM RT has almost no deviations from TRMM.
This is not surprising, since there are no gauge stations that can be used for post-
processing adjustment. GPCP exhibits considerably lower 90th and 95th percentile
scores than TRMM. ERA shows moderate positive deviations for low percentiles,
which however increase to about 5mm at the 90th percentile. ECHAM6 and ETA
are in good agreement with TRMM on the entire percentile domain.

The results described so far all concern statistical properties of local rainfall
distributions. In order to investigate the spatial structure of synchronization between
extreme events at different locations, we will now turn to the results of our CN
approach.

8.5.2. Complex network measures

In the following, we will describe the spatial characteristics of extreme rainfall
synchronicity, which are reflected by the network measures degree (DG), betweenness
centrality (BC), clustering (CC), and regional connectivity (RC), introduced in section
3.4.1. All measures are computed for network measures derived for a maximum delay
of τmax = ±5 days.

For all six datasets, these network measures are obtained by constructing networks
as described in section 8.4 for rainfall events above the 80th, 90th, and 95th percentile,
respectively.

Instead of presenting differences from TRMM as for local statistical values in
the last section, we will show absolute values for each dataset, because rather than
specific local values, the overall spatial patterns are important for this kind of analysis.
For the three network measures DG, BC, and CC, we will also compare spatial
averages between the different datasets for the areas Amazon, SALLJ, MCS, and
ITCZ (Figure 8.15).

Degree (DG)

As explained in section 3.4.1, we expect the DG to be high at locations which are
particularly important for the direct distribution of extreme rainfall over the continent:
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Figure 8.9.: Network measure degree calculated for the 90th percentile of all DJF seasons for
TRMM 3B42 V7 at 0.25◦ (A), 1◦ (C), and 0.75◦ (E) spatial resolution, as well as
for TRMM 3B42 V7 RT (B), GPCP 1DD V1.2 (D), ERA-interim (F), ECHAM6
(G), and ETA (H).
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extreme events at these grid cells are strongly synchronized with extreme events at
many other locations.

DG for 90th percentile events of the TRMM dataset (Figure8.9 and left column
of Figure 8.15) exhibits a connected area of high values from northeastern Brazil
westward across the Amazon Basin, and along the eastern slopes of the central Andes
towards central Argentina, SESA and the adjacent subtropical Atlantic Ocean. The
SACZ is characterized by low values of DG. This spatial pattern indicates the main
and well-known climatological moisture pathways along which extreme rainfall events
synchronize (P1; Vera et al., 2006; Marengo et al., 2012): These pathways lead from
the mouth of the Amazon River across the Amazon Basin and continue farther west
to the Andes, where the mountain range blocks the low-level winds and channels them
southwards. Extreme events follow this wind channel (the SALLJ), cause abundant
rainfall at the eastern slope of the Andes through orographic lifting and continue
further towards northern Argentina and SESA.

For the TRMM RT dataset, we observe a very similar spatial distribution of DG
as for the gauge-calibrated TRMM version. Also for GPCP, the spatial pattern is
similar to the one found for TRMM. However, lower values along the eastern slopes
of the Andes can be observed, which may be due to low numbers of measurement
stations in these regions, as well as interpolations to a regular 1◦ grid.

In contrast, for ERA we get high values only north of the ITCZ over the Atlantic
Ocean, in Uruguay and eastern Argentina as well as over the adjacent subtropical
Atlantic Ocean. All other parts of the continent exhibit quite continuously low DG
values and the pattern which was observed for TRMM is absent. ERA thus fails to
reproduce the main synchronization pathway of extreme events exhibited by TRMM.

DG for the ECHAM6 model data is high in northeastern Brazil, over the Amazon
Basin as well as at the eastern slopes of the Bolivian Andes, in most of SESA and
over the adjacent subtropical Atlantic Ocean. However, values for ECHAM6 are
lower as compared to TRMM over the western Amazon Basin and at the slopes of the
Peruvian and northern Bolivian Andes, indicating that this model does not accurately
represent the southwestward propagation of extreme rainfall from the Amazon.

The ETA model data yield high DG over the western Amazon Basin, in northern
Argentina, and over the subtropical Atlantic Ocean south of 30◦S. No high values can
be found along the eastern slopes of the Andes. Despite these substantial discrepancies,
we argue that the ECHAM6 as well as the ETA model reproduce the large-scale DG
pattern to a reasonable extent.

Betweenness centrality (BC)

For BC (Figure 8.10 and middle column of Figure 8.15), we expect a strong emphasis
on long-ranged, directed synchronization pathways, because this measure is defined
on the basis of shortest paths in the network. In contrast, DG only measures the
connectivity to direct CN neighbors of a grid cell.

For the 90th percentile events of TRMM, BC exhibits high values over the ITCZ,
from northeastern Brazil across the Amazon Basin and along the eastern slopes of
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Figure 8.10.: Network measure betweenness centrality calculated for the 90th percentile of all
DJF seasons for TRMM 3B42 V7 at 0.25◦ (A), 1◦ (C), and 0.75◦ (E) spatial
resolution, as well as for TRMM 3B42 V7 RT (B), GPCP 1DD V1.2 (D), ERA-
interim (F), ECHAM6 (G), and ETA (H).
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the Andes southwards to central Argentina. In addition, relatively high values can
be observed over the SACZ. This spatial distribution of BC has been found to be
consistent with the interpretation of large scale, directed moisture pathways in chapter
4 and the associated publication P1. Apart from being less homogeneous, the spatial
pattern is similar to the one for DG over eastern Brazil, the Amazon Basin, along the
Andes and over SESA. On the other hand, BC is high in the vicinity of the ITCZ and,
to weaker extent, in the vicinity of the SACZ, where DG is particularly low. This
highlights the role of these convergence zones for large-scale propagation of extreme
events over the entire continent, since their high connectivity only becomes apparent
when taking into account network paths incorporating several other locations, as
opposed to only local next neighbor connections.

The spatial pattern of BC for the TRMM RT dataset is in very good agreement
with the results for TRMM, indicating that the large-scale propagation of extreme
events is already captured well by the satellite-only product.

Similarly, results for the GPCP dataset are in fair agreement with TRMM’s spatial
pattern, with only small discrepancies at the eastern slopes of the southern Central
Andes.

In strong contrast to DG, the spatial pattern of BC exhibited by ERA does quite
accurately resemble the spatial pattern found for TRMM, with high values marking
the large-scale propagation pathway from the ITCZ towards the Andes and southwards
to northern Argentina (Figure8.10). Since BC is the more sophisticated measure for
the long-range, directed propagation pathways, we conclude that ERA reproduces
the climatological synchronization pathway, although it does not perform well in
estimating the local connectivities along the pathway.

For the ECHAM6 Model, there are high values of BC over the ITCZ as well,
but also over the entire coast of northeastern South America as well as the CAB.
Furthermore, high values can be observed in Bolivia and northern Argentina east of
the Andes. Hence, this model accurately incorporates the large-scale propagation
paths.

The ETA model yields high BC in the central and western Amazon Basin. Values are
also relatively high at the eastern slopes of the Southern Andes of Argentina. However,
over the ITCZ and in the vicinity of the SALLJ in Bolivia they are not as high as for
the other five datasets. Hence, the ETA model does not perform well in reproducing
the large-scale transport route from the ITCZ across the Amazon and southward along
the Andes to the subtropics. In particular, problems with implementing the SALLJ’s
impact on extreme rainfall and corresponding orographic effects at the eastern slopes
of the Central Andes are apparent. The latter observation, which is corroborated by
the results obtained for DG, is in agreement with the underestimation of 90th and
95th percentile scores by the ETA model at the eastern Andean slopes described in
section 8.5.1.
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Figure 8.11.: Network measure clustering calculated for the 90th percentile of all DJF seasons
for TRMM 3B42 V7 at 0.25◦ (A), 1◦ (C), and 0.75◦ (E) spatial resolution, as well
as for TRMM 3B42 V7 RT (B), GPCP 1DD V1.2 (D), ERA-interim (F), ECHAM6
(G), and ETA (H).
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Clustering (CC)

Extreme rainfall in regions with high CC values (Figure 8.11 and right column of
Figure 8.15) can be expected to occur in a spatially coherent manner; in particular,
this is the case for large thunderstorms, squall lines, and MCS.

For events above the 90th percentile (Figure 8.11 and right column of Figure 8.15),
the TRMM dataset exhibits high CC at the mouth of the Amazon river, in eastern
Brazil, at the slopes of the northern Argentinean Andes as well as in most of SESA
including most of Paraguay. The Amazon Basin and the SACZ are characterized by
low CC. In chapter 4, we attributed high CC values in northern Argentina, Paraguay,
and southern Brazil to the frequent development of MCS in this region. Similarly,
high values in northern Brazil close the Atlantic coast may correspond to the so-called
Amazonian squall lines (Cohen et al., 1995). Furthermore, rainfall on the Altiplano
and Puna de Atacama plateaus in northwestern Argentina and southwestern Bolivia
has been found to typically occur in a way that it either rains on the entire plateau
for several days in a row, or it does not rain on the entire plateau (Garreaud, 2000b).
This spatial coherence of rainfall events is expressed by high CC values over the
plateau for the TRMM dataset.

While the relative spatial pattern of CC for TRMM RT looks similar to the one
for TRMM, we observe substantially higher values for the satellite-only product in
all regions and for all three event types.

Although the GPCP dataset yields too low CC values in the entire spatial domain,
it has to be noted that the only region of relatively enhanced values is the subtropical
region around Paraguay. Thus, GPCP does in this sense still discover this area of
frequent MCS development, although values are much lower than for TRMM for all
three percentiles.

ERA as well as ECHAM6 do not show any concise spatial pattern of CC, suggesting
that these models have problems to reproduce large convective systems (e.g., MCS or
large thunderstorms).

In contrast, the ETA model shows a clear spatial signature for CC, with relatively
low values over the CAB, although they are still much higher than for TRMM.
However, while some similarities to the pattern obtained for TRMM are apparent,
values are not particularly high in Paraguay and northern Argentina.

Regional Connectivity (RC)

Regional connectivity of a given region yields an estimate of where extreme events
typically occur synchronously with events in that region.

CAB. Events above the 90th percentile in the CAB (Figure 8.12) are synchronized
with events in the entire Amazon Basin, but also with events at the eastern slopes of
the Peruvian and northern Bolivian Andes for TRMM. Furthermore, there are weak
linkages to northern Argentina. TRMM RT exhibits very similar regional connectivity
for the central Amazon. For both TRMM and TRMM RT, weak connections to the
eastern Amazon Basin can be interpreted as a consequence of the dominant easterly
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direction of low-level winds in this area, driving extreme rainfall events from the
eastern part of the Amazon to the west. However, we also observe connection to
the west until the eastern slopes of the Central Andes in northern Bolivia. This
shows that extreme events in the Amazon Basin are climatologically synchronized
with extreme events at the eastern slopes of the Andes. On longer spatial scales, we
observe a linkage between extreme rainfall in the Amazon and a small area in northern
Argentina at the foothills of the Andes. These results support the hypotheses that
the Amazon plays a crucial role for distributing and propagating extreme rainfall
events to large parts of the remaining continent, as it was suggested by high DG and
BC values.

For GPCP, the CAB is only connected to the larger area of the Amazon Basin and
the slopes of the Peruvian Andes, but not of the Bolivian Andes, possibly due to a
lack of gauge stations in this area.

In comparison, for ERA the connectivity of the central Amazon is more localized,
with almost no links pointing out of the region. In particular, the pattern of long-
ranged connection between the Amazon Basin and the eastern slopes of the Peruvian
and Bolivian Andes is not reproduced by ERA.

In contrast, the ECHAM6 model produces strong connections to the eastern part
of the Amazon Basin as well as to the Peruvian and Bolivian Andes to the west in a
similar way as observed for TRMM. However, the teleconnection from the Amazon
Basin to northern Argentina is not visible.

For the ETA model, events in the central Amazon are less synchronized to the
eastern parts of the basin as compared to TRMM, but still present. No connectivity
to the eastern slopes of the Andes and the adjacent lowlands can be observed. Thus,
the ETA model reasonably resembles the connectivity of the central Amazon to the
eastern and northern parts of the basin, but it does not show any connectivity to the
eastern slopes of the Peruvian and Bolivian Andes. This suggests that the impact of
the low-level flow from the Amazon Basin towards the Andes and relevant orographic
lifting effects on extreme rainfall are not correctly implemented in this model.

SESA. The regional connectivity of SESA (Figure 8.13) is represented quite
similarly by all six datasets. The main discrepancy is that only TRMM and TRMM RT
show a connection to the eastern slopes of the southern central Andes in northwestern
Argentina and southern Bolivia. This signature can be assigned to a certain class
of MCS, which form over SESA and then migrate towards the Bolivian Andes as
described in the previous chapter 7. While the GPCP dataset seems to incorporate
them (although less concise), none of the remaining three datasets yields a signature
corresponding to these special MCS.

SACZ. The SACZ region is connected only locally with very few links pointing out
of it for TRMM (Figure 8.14). All five remaining datasets quite accurately reproduce
this rather localized signature.
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Figure 8.12.: Network measure regional connectivity for the central Amazon Basin (blue box)
calculated for the 90th percentile of all DJF seasons for TRMM 3B42 V7 at 0.25◦

(A), 1◦ (C), and 0.75◦ (E) spatial resolution, as well as for TRMM 3B42 V7 RT
(B), GPCP 1DD V1.2 (D), ERA-interim (F), ECHAM6 (G), and ETA (H).
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Figure 8.13.: Network measure regional connectivity for southeastern South America (SESA,
blue box) calculated for the 90th percentile of all DJF seasons for TRMM 3B42
V7 at 0.25◦ (A), 1◦ (C), and 0.75◦ (E) spatial resolution, as well as for TRMM
3B42 V7 RT (B), GPCP 1DD V1.2 (D), ERA-interim (F), ECHAM6 (G), and
ETA (H).
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Figure 8.14.: Network measure regional connectivity for the South Atlantic Convergence Zone
(SACZ, blue box) calculated for the 90th percentile of all DJF seasons for TRMM
3B42 V7 at 0.25◦ (A), 1◦ (C), and 0.75◦ (E) spatial resolution, as well as for
TRMM 3B42 V7 RT (B), GPCP 1DD V1.2 (D), ERA-interim (F), ECHAM6 (G),
and ETA (H).
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Spatial averages of network measures

The four regions indicated as CAB, SALLJ, MCS, and ITCZ in Figure 8.1 are of
particular relevance for some key features of the SAMS: As explained in section
1.2, the ITCZ, the Amazon Basin, as well as the area east of the Central Andes
in the vicinity of the SALLJ play important roles for the large-scale propagation
of extreme events. On the other hand, the MCS region is frequently exposed to
exceptionally large convective complexes, contributing large fractions of total seasonal
rainfall. In addition to the pattern analysis carried out in the previous sections, we
therefore compute spatial averages of the network measures DG, BC, and CC for
these four regions (Figure 8.15), computed for networks derived from events above
the 80th, 90th, respectively 95th percentiles. As above, we shall consider TRMM as
reference, and discuss deviations from the values found for TRMM for the remaining
five datasets.

CAB. Due to its central role for the propagation of extreme rainfall over the entire
continent, the CAB is expected to exhibit high DG and BC (first row in Figure 8.15).
For TRMM RT and GPCP, the local connectivity (as expressed by DG) as well as the
long-ranged centrality (as expressed by BC) of the CAB are reproduced well for 80th,
90th, and 95th percentile events. For ERA, DG is strongly suppressed for all three
event thresholds, but BC is reproduced reasonably well. Both ECHAM6 and ETA
show too low DG for 80th percentile events, and too high DG for 95th percentile
events, while DG for 90th percentile events is accurate. BC of the latter two datasets
is too high for all three event types.

The crucial role of the Amazon Basin for the distribution and propagation of
extreme rainfall is thus captured by all datasets except ERA, with the ETA and
ECHAM6 models even overestimating the long-ranged centrality as expressed by BC.

SALLJ. Both the local connectivity (DG) and the long-range centrality (BC)
of extreme events in the SALLJ region are accurately represented by the TRMM
RT dataset. GPCP strongly underestimates DG for all three event types, possibly
due to lack of station data at the Andean slopes. Interestingly, however, BC for
the GPCP data is in good agreement with TRMM, indicating that the long-range
character of extreme event propagation in this region is still captured well, despite the
shortcomings in local connectivity. For the most extreme events, ERA performs well
with respect to the SALLJ, but for 80th and 90th percentile events, DG is strongly
underestimated. In contrast, BC is substantially higher than for TRMM for all three
event thresholds. ECHAM6 shows too low DG and too high BC for events above the
80th percentile, but both measures are in good agreement with TRMM for higher
percentiles. The ETA model strongly underestimates DG in the SALLJ region, and
also BC is too low for all three percentiles.

Together with the spatial patterns of DG and BC described above, our results
indicate that the influence of the SALLJ on the propagation of extreme rainfall, as
well as associated orographic lifting effects, are neither adequately represented by the
station-based GPCP, nor by the model-derived ERA and ETA datasets. In particular
for the ETA model, this is somewhat surprising, since the different vertical coordinate
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Figure 8.15.: Differences of network measures degree, betweenness centrality, and clustering to
the TRMM reference dataset for the spatial boxes Amazon, SALLJ, MCS, and
ITCZ. (see Figure 8.1 for definitions of boxes). Values are shown for rainfall events
above the 80th, 90th, and 95th percentiles respectively.
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scheme is expected to improve the representation of rainfall over complex and steeply
ascending terrain. As noted above, however, this only yields a better representation
of mean daily rainfall when compared to ERA and ECHAM6, while the tail of the
distribution at the eastern Andean slopes is underestimated by ETA. In view of the
shortcomings with respect to DG and BC, we suggest that ETA does not only have
problems with the magnitudes, but also with the synchronization structure of these
events.

MCS. As mentioned in section 1.2, the region labeled MCS in Figure 8.1 is
exposed to exceptionally large Mesoscale Convective Systems. According to our
interpretation of CC, this should lead to high values of this measure.

The TRMM RT dataset exhibits too high CC values over the MCS region for all
three percentile thresholds. While the absolute values of CC are too low for GPCP,
its spatial pattern described above (Figure 8.11) does exhibit relatively high values
over the MCS region. In contrast, ERA, and ECHAM6 underestimate the clustering
of events above all three percentile thresholds in this region. This suggests that
these models fail to reproduce the clustering in the spatial synchronization structure
caused by Mesoscale Convective Systems in this area. The problems of global and
regional models to implement the amplitude and spatiotemporal patterns of large
thunderstorms in this region are well-known (Solman et al., 2007; Chou et al., 2011;
Solman et al., 2013). It should therefore be emphasized that, while it underestimates
CC for events above the 80th and 90th percentiles, the ETA dataset is the only one
for which we observe CC values comparable to TRMM for the most extreme events
(above the 95th percentile).

ITCZ. The ITCZ plays an important role as source of extreme rainfall on the
South American continent, with emphasis on long-ranged propagation. We therefore
expect it to exhibit high BC, as is found for TRMM.

For the TRMM RT data, BC over the ITCZ region is in excellent agreement with
TRMM. GPCP overestimates BC for events above the 80th percentile but also yields
accurate values for events above the 90th and 95th percentiles. ERA overestimates
BC over the ITCZ for all three event thresholds, while ECHAM6 is accurate for
events above the 80th and 90th percentiles. The ETA model strongly underestimates
the ITCZ’s role for the long-range connectivity of all three event thresholds.

8.6. Conclusion

The remote-sensing derived, gauge-calibrated TRMM 3B42 V7 has been previously
found to provide a reasonable dataset for delineating South American rainfall (Car-
valho et al., 2012), in particular with respect to the spatiotemporal patterns of
extreme events (see chapter 4). In this chapter, we used TRMM 3B42 V7 as a
reference data set, to which we compared the real-time satellite-product TRMM
3B42 V7 RT, the remote-sensing and station-based product GPCP 1DD V1.2, the
model-derived reanalysis product ERA-interim, as well as data output from the global
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circulation model ECHAM6 and the regional climate model ETA, which is driven by
ERA-interim.

We performed two comparisons: First, we evaluate dataset differences with a
classical statistical approach; second, we rely on complex network theory to analyze
spatial patterns of extreme event co-variability in the six datasets.

In the first part, we discussed classical statistical values. Overall best agreement
with TRMM is found for the TRMM RT and the GPCP product. This is little
surprising, because GPCP partly uses the same calibration scheme as TRMM. Most
notably in this context, while mean daily rainfall values agree well with some discrep-
ancies over the Amazon Basin and the South Atlantic Convergence Zone, all three
model-derived datasets underestimate the scores of the 90th and 95th percentiles
when compared to TRMM 3B42 V7. Depending on the geographic area and the
specific dataset, percentile scores remain in good agreement with TRMM up to
the 65th to 85th percentile. Above these percentiles, ERA-interim, the ETA, but
also the ECHAM6 model (in the South Atlantic Convergence Zone) underestimate
the frequency of extreme rainfall events. The right-hand tail of the daily rainfall
distribution, representing pronounced low-frequency but high-magnitude events, is
thus not reproduced well by any of the model-derived datasets.

In the second part, we have applied a recently introduced methodology based on
complex network theory to analyze the spatial characteristics of extreme rainfall
synchronicity.

We have employed several complex network measures in order to quantify different
aspects of this internal spatial structure of extreme rainfall synchronicity and found
substantial differences between the six datasets analyzed: Our results suggests that
TRMM RT’s and GPCP’s representation of the large-scale propagation patterns are
the ones closest to the patterns found by TRMM. We observe that the model-derived
ERA-interim reanalysis data do not correctly reproduce key features of the South
American monsoon system from the perspective of local synchronizations (degree).
These include the effects of deep convection over the Amazon Basin or the orographic
barrier of the eastern Andes and their role for large scale moisture transport. However,
the ERA-interim dataset does incorporate these features accurately when taking into
account long-ranged connections over several steps in the network (betweenness cen-
trality). Still, the global model ECHAM6 and the regional model ETA perform better
in reproducing these features. The propagation pathway from the western Amazon
towards the subtropics along the eastern slopes of the Andes, which is associated
with the South American Low-Level Jet, is well represented by the ECHAM6 model,
while the ETA model fails to produce this feature.

Concerning large convective systems, in contrast to TRMM and TRMM RT, ERA
as well as ECHAM6 fail to reproduce any spatially organized rainfall clusters in regions
where they are known to frequently occur, such as in southeastern South America.
ETA exhibits some spatial patterns possibly corresponding to large organized systems,
but also not in this specific area where these would be most relevant. While the
overall spatial organization for GPCP differs considerably from TRMM, Mesoscale
Convective Systems in southeastern South America are detected reasonably well.
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Linkages of synchronous extreme rainfall from the central Amazon Basin to the
eastern slopes of the Andes observed for TRMM and TRMM RT are only resembled
by the ECHAM6 model, but not by the ERA, ETA, and GPCP datasets.

Regarding teleconnections from two regions important for the aforementioned
rainfall dipole (southeastern South America and the South Atlantic Convergence
Zone), all six datasets coherently find a rather localized pattern with little connections
to other regions. However, a linkage from southeastern South America to the eastern
slopes of the southern central Andes is only present for the TRMM, TRMM RT, and
the GPCP datasets.
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Chapter 9.

Impacts of the El Niño Southern
Oscillation on Extreme Moisture
Divergence

9.1. Summary

The purpose of this chapter is to investigate the temporal evolution of moisture
divergence and its spatial clustering properties over South America, with particular
focus on dependencies on the phase of the El Niño Southern Oscillation (ENSO).
Moisture divergence is computed from daily reanalysis data of vertically integrated
moisture flux. A sliding-window approach is used to construct a sequence of complex
networks, each obtained from synchronization of events of strong positive (negative)
moisture divergence, which we interpret as strong evapotranspiration (precipitation)
events. The main results can be summarized as follows: i) Moisture divergence values
over the Amazon rainforest are typically higher during positive ENSO periods (El
Niño events). ii) The spatial coherence of strong positive (upwelling) events assumes
a characteristic pattern of reduced coherence in this area during El Niño conditions.
This influence of ENSO on moisture divergence and its spatial coherence is dominated
by the El Niño events of 1982, 1987, and 1997. iii) The clustering characteristics
of the obtained climate networks qualitatively agree with the spatial distribution of
connected regions with simultaneous events (i.e., events that occur at the same time),
but provide a more detailed view on the spatial organization of strong atmospheric
upwelling events. Interestingly, no comparable results are found for negative extremes
of moisture divergence (strong precipitation events). This chapter is based on the
associated publication P7, and some of its sections will closely follow the presentation
in this publication.

9.2. Introduction

Recent climate network studies have provided novel insights into the global impact and
spatiotemporal organization of the El Niño Southern Oscillation (ENSO) (Yamasaki
et al., 2008; Tsonis and Swanson, 2008). In particular, this approach has lead to
a novel strategy for anticipating positive ENSO (El Niño) events (Ludescher et al.,
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2013) as well as discriminating between different types of positive and possibly also
negative ENSO (La Niña) events (Radebach et al., 2013).

As described in chapter 4, the spatial patterns exhibited by various complex
network measures based on the temporal synchronization between extreme rainfall
events reveal the most important features of the South American Monsoon System.
These include the main moisture pathways, their interplay with orography (orographic
rainfall, (Bookhagen and Strecker, 2008)), the main convergence zones, and areas with
frequent thunderstorm development. Specifically, it was documented that frequent
occurrences of squall lines (Garreaud and Wallace, 1997) and Mesoscale Convective
System (Durkee et al., 2009; Durkee and Mote, 2009) lead to high values of the local
clustering coefficient in the resulting networks. Since the probability of two grid
cells to exhibit a high degree of interdependence typically decays with their distance
(Donges et al., 2009b; Radebach et al., 2013), high local clustering coefficients in
networks based on the synchronization of events indicate that extreme events in the
corresponding region occur in a spatially coherent manner.

In this chapter, we analyze strong positive and negative values (above the 90th
percentile and below the 10th percentile) of the daily divergence of vertically integrated
moisture flux. Positive moisture divergence, in simple terms, can be viewed as
upward moisture transport from the surface to the atmosphere, for example caused
by evapotranspiration; in contrast, negative moisture divergence corresponds to
downward movement of moisture from the atmosphere to the surface in form of
precipitation. We investigate the dependence of the associated spatial patterns on the
ENSO phase, with a focus on the spatial coherence and large-scale organization of
events. For this purpose, we use a sliding-window approach and construct networks
based on symmetric event synchronization (ESsym, cf. equation (2.4)) for time
intervals of 365 days width in steps of 60 days. We analyze the temporal evolution of
local and global clustering coefficients of these networks, and compare it to ENSO
variability.

For comparison and in order to look at the resulting spatial patterns from a different
viewpoint, we also compute the average size of connected regions of simultaneous
events. Here, simultaneous means that events occur at the very same day, as opposed
to synchronized, where we here allow for a maximum delay of ±5 days between
associated events. This approach provides a rather intuitive and direct way to
analyze the spatial coherence of strong vertical moisture fluxes and adds quantitative
information on the typical spatial extensions of simultaneous events in a given region.
It can be understood as a more traditional approach to analyze spatial coherence,
complementary to the climate network approach.

9.3. Data

We employ daily data of vertically integrated moisture flux from NASA’s Modern-
Era Retrospective Analysis for Research and Applications (MERRA, see (Rienecker
et al., 2011)), with temporal coverage from 1979 to 2010 for the region between 15◦N
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and 40◦S, and 30◦W and 85◦W, at a latitudinal resolution of 1/2◦ and longitudinal
resolution of 2/3◦.

Divergence of this flux was calculated using finite differences. Denoting vertically
integrated atmospheric moisture content (i.e., precipitable water) by A, divergence of
vertically integrated moisture flux by M , precipitation by P , and evapotranspiration
by E, the water balance equation reads

∂tA + M = E − P. (9.1)

We emphasize that E and P are never negative. A positive extreme of M in a given
grid cell can in principle be caused by two different effects: A sudden decrease of
moisture inflow from neighboring grid cells, or an extreme event of E. In the former
case, the neighboring grid cells cannot have a positive extreme event of M at the same
time step, while in the latter case extreme events should typically occur spatially
homogeneously. Therefore, if positive extreme events of M occur in a spatially
homogeneous way, i.e. as part of large connected components of simultaneous positive
extreme events, the former effect can be dismissed. As we will demonstrate in the
course of this work (see Figure 9.11 below), positive extreme events of M occur in
fact spatially homogeneously, which allows to interpret these events as extreme events
of E. On the other hand, by the same rationale, negative extrema of M typically
lead to extreme events of P .

While spatial clustering of strong rainfall events in South America has a straightfor-
ward interpretation in terms of thunderstorms and large convective systems and has
been discussed in chapter 4 and the associated publication P1, the spatial coherence
of strong evapotranspiration events has not been discussed in the literature so far.
This may be due to the fact that a climatological interpretation is not as simple as
in the case of precipitation, since evapotranspiration is considered to be controlled
by regional and local conditions. However, factors influencing evapotranspiration
rates, such as solar radiation, temperature, and wind, can indeed act coherently on
rather large spatial scales and thus lead to interrelations of evapotranspiration time
series at remote locations. We observe that evapotranspiration exhibits an event-like
structure, i.e., short time periods during which values are much higher than during the
remaining times (Fig. 9.1). A particular focus of the following analysis will be on the
Amazon Basin. In this area, evapotranspiration by dense vegetation cover and high
biomass amounts – in combination with southwestward and westward propagating
convective storm systems from the Atlantic Ocean – yield an important contribution
to overall positive moisture divergence (Lean and Warrilow, 1989; Shukla et al., 1990;
Eltahir and Bras, 1993).

For the ENSO signal, the monthly multivariate ENSO index (MEI5, cf. (Wolter
and Timlin, 1993; Wolter and Timlin, 1998)) is used. It is based on the six variables
sea-level pressure, zonal and meridional surface wind components, sea and air surface
temperature, and total cloud fraction. MEI is therefore considered a more reliable

5retrieved from https://climatedataguide.ucar.edu/climate-data/multivariate-enso-index
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Figure 9.1.: Example of a daily time series of moisture divergence for 1979 at 5◦S, 60◦W , and
the corresponding thresholds at the 10th (dashed) and the 90th percentile (solid).
Positive values indicate net evapotranspiration, while negative values indicate net
precipitation.

estimator of the ENSO state than indices like NINO 3.4 (based solely on sea surface
temperatures) or SOI (based on sea-level pressure) (Rasmusson and Carpenter, 1982;
Trenberth, 1997; Trenberth and Stepaniak, 2001). Time intervals for which MEI is
larger than +1 (smaller than −1) are considered to be warm, i.e. El Niño (cold, i.e.
La Niña) episodes, while the remaining periods will be referred to as neutral.

9.4. Methods

9.4.1. Network construction

In order to investigate the temporal evolution of the clustering characteristics of the
obtained networks, we choose a sliding window approach. We construct networks
from time slices with a length of 365 days in steps of 60 days (∼ 2 months), resulting
in 195 time steps for the entire period between 1979 and 2010. Out of these, 38 fall
into El Niño phases and 21 into La Niña phases. We first transform the data for each
of these time slices and at each grid point into an evapotranspiration (precipitation)
event series by considering those days as events for which M is among the highest
(lowest) 10% of all values for that location and time interval, resulting in 36 events
for each time slice. We note that, since the percentiles are computed for each grid
cell and time step, the corresponding event thresholds vary in space and time.

In order to construct a network from the obtained event series, we employ symmetric
Event Synchronization (ESsym) to decide whether or not two time series (i.e., network
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nodes) are sufficiently similar to be connected by a network link. In this case, we
consider l = 36 events for each grid point and each time interval. To exclude
unreasonably long delays between events at different locations, we here choose a
maximum delay of τmax = 5 days.

A network is obtained by thresholding ESsym at the 95th percentile, resulting in a
link density of 5%. The network’s adjacency matrix is thus given by

Aij = Θ(ESsym
ij − T 0.95) − δij , (9.2)

where it is recalled that Θ is the Heaviside “function”, T 0.95 denotes the 95th percentile
of all entries of ESsym for a given time window, and Kronecker’s δ appears in order
to exclude self loops. In this way, we construct t = 195 networks for time spans of
365 days, in steps of 60 days. We find that all event synchronization values that are
represented by network links through this procedure are significant (p-value < 0.05)
with respect to a null model based on uniformly placing 36 events (highest respectively
lowest 10%) in a time series of 365 days at random.

9.4.2. Network analysis

By construction, clustering characteristics of synchronized evapotranspiration and
precipitation events are encoded in the topology of the networks derived in the manner
described above. As outlined in chapter 3, topological properties of networks can be
quantified by suitable network measures. The first measure we consider here is the
local clustering coefficient (LC):

LCi :=
∑

j<k AijAjkAik∑
j<k AijAik

. (9.3)

This measure is identical with the clustering coefficient (CC) defined in section 3.4.1.
However, we repeated its definition here and renamed it to local clustering coefficient
in order to distinguish it from the global clustering coefficient defined below. LCi

gives the relative frequency of network neighbors of i that are themselves connected.
Since the probability of a network link between two grid cells decays with their
geographical distance (Donges et al., 2009b), a connected region with high local
clustering coefficients will be a region of large spatial coherence: Strong events in
regions of continuously high local clustering coefficients are expected to typically all
occur close in time (within τmax = 5 days), while low local clustering coefficients
indicate more erratic and spatially incoherent behavior. This is in agreement with
the results of chapter 4 and the associated publication P1.

The global clustering coefficient (GC) is defined as the arithmetic mean of local
clustering coefficients, taken over the entire network:

GC := 1
N

N∑
i=1

∑
j<k AijAjkAik∑

j<k AijAik
= 1

N

N∑
i=1

LCi, (9.4)
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where N is the number of nodes. Therefore, it gives an estimate of the overall
tendency towards spatially coherent evapotranspiration or precipitation regimes.

9.4.3. Connected regions of simultaneous extremes

Complementarily to the network approach, we also investigate the spatial patterns of
the average size (measured as the number of grid cells) of spatially connected regions
of simultaneous events (SC). Here, two grid cells are considered spatially connected
if they are longitudinally, latitudinally, or diagonally adjacent in space. We first
look for each day μ in a given time window (of length 365 days) for the Nμ spatially
connected components {Cμ

m}1≤m≤Nμ of grid cells at which events occur at that day.
Then, we assign to each grid cell the value of the size of the component it belongs to:

Sμ
i =

∑
{Cμ

m}
δCμ

m
(i)|Cμ

m|, (9.5)

where |Cμ
m| denotes the cardinality of Cμ

m and δCμ
m

(i) = 1 if i ∈ Cμ
m and δCμ

m
(i) = 0

otherwise. Finally, we average Sμ
i over all days μ for which Sμ

i > 0,

SCi = 1
t′

∑
{μ|Sμ

i �=0}
Sμ

i , (9.6)

where in our case t′ = 36 days. Since the actual size of horizontal grid cells depends
on the latitudinal position, we correct the values of SC by weighting them with cos(λ),
where λ denotes the latitudinal angle ranging from 40◦S to 15◦N.

9.4.4. Pattern analysis

The time evolution of the network’s global clustering properties (GC) can be directly
compared to ENSO variability. For LC, we obtain a vector of dimension N (the
number of grid points) for each time interval. But apart from the temporal evolution
of the overall mean of this vector (i.e., GC), we are interested in a more detailed
analysis of how the spatial patterns change during time evolution. For this purpose,
we first compute Spearman’s rank correlation coefficients between the ENSO signal
and the time series of LC at each location.

Complementarily, we investigate the time evolution of spatial patterns of LC by
means of pattern similarity analysis. For this purpose, we first compute the spatial
ranks RLC of all LC values for each time interval: For each time step μ, we have
an N -dimensional vector LCμ, containing the values LCμ

i of the local clustering
coefficient for the N geographical positions i. This array can be sorted with respect
to these values. By ”spatial ranks" (RLC), we refer to the position RLCμ

i (a number
between 1 and N) of a given entry LCμ

i in that sorted array. We then calculate the
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L1-distance between the respective vectors RLCμ and RLCν obtained for all pairs
of time intervals (μ, ν):

Lμν =
N∑

i=1
|RLCμ

i − RLCν
i | (9.7)

with space indices 1 ≤ i ≤ N for the number of grid cells (i.e., network nodes),
N = 9324, and time indices 1 ≤ μ, ν ≤ t with t = 195. The column- (or row-) wise
mean,

MLμ = 1
t

t∑
ν=1

Lμν (9.8)

of the symmetric distance matrix L = (Lμν)1≤μ,ν≤t provides information on the
dissimilarity of a spatial pattern observed in a given time interval in comparison with
the patterns attained during all other intervals. Low values indicate that the spatial
patterns assume some characteristic structure at these times. Calculating ML for all
times results in another time series that can be compared to ENSO variability.

Finally, for LC and SC, we construct composites, i.e. we average the values at each
location separately for warm (El Niño), neutral and cold (La Niña) stages of ENSO
in order to obtain typical spatial patterns of these two measures for the three ENSO
phases.

9.5. Results

9.5.1. Spatial patterns of moisture divergence

Regarding composites (i.e., spatial fields averaged over the respective time periods),
we find that the strongest influence of ENSO on mean daily values of M (Fig. 9.2),
as well as on the thresholds defining strong evapotranspiration (above the 90th
percentile, Fig. 9.3) and precipitation (below the 10th percentile, Fig. 9.4) events
appears in a belt over the eastern and northern Amazon Basin and the adjacent coastal
regions near the equator. Mean as well as strong evapotranspiration event thresholds
increase in these regions during El Niño conditions, while strong precipitation event
thresholds show the opposite behavior: values decrease over the tropical Atlantic
Ocean and the entire Amazon Basin. The La Plata Basin exhibits higher 90th
percentiles and lower (i.e., more pronounced negative) 10th percentiles during El
Niño conditions, whereas average values are not markedly different in this area during
the different ENSO phases. For a more detailed quantification of the impact of
ENSO on M , we employ Spearman’s rank correlation coefficient (SR) to analyze
the interdependence between ENSO based on the MEI and each local value of
mean, 90th (strong evapotranspiration) and 10th (strong precipitation) percentiles
of M . We find correlation values between +0.3 and +0.5 over the Amazon Basin
and the tropical Atlantic Ocean close to the Brazilian coast for both mean values
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Figure 9.2.: Composites of mean daily moisture divergence M for warm (A), neutral (B), and
cold (C) ENSO conditions, and difference of composites for warm and neutral ENSO
conditions (D). Note the increased values in northern South America and along the
equator during El Niño conditions.
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Figure 9.3.: Composites of 90th percentiles of moisture divergence M (corresponding to strong
evapotranspiration events) for warm (A), neutral (B), and cold (C) ENSO conditions,
and difference of composites for warm and neutral ENSO conditions (D). Note the
increased values in northern South America and along the equator during El Niño
conditions.
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Figure 9.4.: Composites of 10th percentiles of moisture divergence M (corresponding to strong
precipitation events) for warm (A), neutral (B), and cold (C) ENSO conditions,
and difference of composites for warm and neutral ENSO conditions (D). Note the
decreased values in northern South America and along the equator during El Niño
conditions.
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(Fig. 9.5A) and strong evapotranspiration events (Fig. 9.5B). In contrast, thresholds
for strong precipitation events are negatively correlated with MEI (between −0.3
and −0.5) in this area (Fig. 9.5C). Correlations between MEI and daily means of M
are positive throughout eastern Brazil and negative in Uruguay and northeastern
Argentina (58◦W, 32◦S). In contrast, for strong evapotranspiration event thresholds,
there are negative correlations in easternmost Brazil, while positive correlations reach
from southeastern Brazil to northern Argentina, covering the entire La Plata Basin.
Correlations between MEI and the 10th percentiles are positive with values between
+0.3 and +0.5 in the southern La Plata basin.

In addition, we observe positive correlation values in the hyper-arid Atacama desert
in northern Chile as well as on the adjacent Puna Plateau in northwestern Chile and
southern Bolivia for both daily means and strong evapotranspiration event thresholds.
In contrast, strong precipitation event thresholds are negatively correlated with ENSO
in these regions.

9.5.2. Clustering of extreme moisture divergence: time-dependence

For strong evapotranspiration events, the distance matrix L (Fig. 9.6) obtained
from the procedure described above exhibits reduced L1-distance values for a variety
of time intervals. Most notably, there appear two blocks in L which have shorter
mean distances among themselves as compared to patterns obtained from other time
intervals. These two blocks overlap between 1992 and 1998. The mean of L restricted
to the time from 1979 to 1998 is 2.45 · 107 with standard deviation 0.32 · 107, and
2.44 · 107 with standard deviation 0.32 · 107 when restricted to the time from 1992
to 2012. For comparison, the mean of L between these two time periods (i.e., the
mean of the block of L defined by 1998 ≤ μ ≤ 2012 and 1979 ≤ ν ≤ 1991 is 2.57 · 107

with standard deviation 0.06 · 107. For all times together, we obtain 2.50 · 107 for the
mean of L and 0.25 · 107 for the standard deviation. For strong precipitation events,
L does not show such a clear pattern (Fig. 9.7).

From 1979 to 2005, for strong evapotranspiration events the row-wise mean of L
(ML, Fig. 9.8B) tends to have its minima at times of positive ENSO conditions. Here,
minima correspond to the sequence of low values of L in Fig. 9.6. The row-wise mean
of L is anti-correlated with MEI (Fig. 9.8A) with SR(GC, MEI) = −0.47 (p-value of
the order of 10−12). In contrast, for strong precipitation events, the row-wise mean
of L (Fig. 9.9B) does not show visual similarity to MEI, corresponding to low and
non-significant correlation values.

The global clustering coefficient of the obtained networks responds negatively to
MEI, with SR(GC, MEI) = −0.48, for strong evapotranspiration events (Fig. 9.8C).
The corresponding p-value, obtained from a two-sided t-test, is of the order of 10−13.
For strong precipitation events, no visual interdependence between MEI and GC can
be observed (Fig. 9.9C). In accordance, the correlation is much weaker in this case
(SR(GC, MEI) = −0.15 with p-value p = 0.04).

129



Chapter 9. Impacts of the El Niño Southern Oscillation on Extreme Moisture Divergence

Figure 9.5.: Spearman’s rank correlation coefficient (SR) between the ENSO index MEI and
mean (A), 90th percentiles (B), and 10th percentiles (C) of moisture divergence M.
Note in particular the positive correlations between mean and 90th percentiles of
moisture divergence and MEI in northern South America, as well as the negative
correlations in the same area for 10th percentiles.
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Figure 9.6.: L1-distance matrix L between the ranks of the local clustering coefficients (RLC)
obtained for events above the 90th percentile (strong evapotranspiration events)
for all time windows. Note the two time periods (1981 to 1998 and 1992 to 2009)
with lower distances among themselves and higher distances to the respective other
time period. The corresponding two blocks of L are indicated by dashed red lines.

Due to the weak interrelations between MEI and clustering properties obtained for
strong precipitation events, we will focus on strong evapotranspiration events in the
following sections.

9.5.3. Spatial patterns of clustering of extreme evapotranspiration
events

Mean composites of LC (Fig. 9.10) show relatively high values over the Pacific Ocean
between 10◦S and 30◦S, over the tropical Atlantic Ocean and the adjacent coast of
northeastern Brazil, and over most of subtropical South America for all three ENSO
stages. Relatively low values can be seen over the central Andes and eastern central
Brazil. Comparing the three different ENSO stages reveals that El Niño times are
most notably characterized by decreased LC values over the entire Amazon Basin as
compared to neutral and La Niña times.

For both positive and negative ENSO phases as well as neutral ENSO conditions,
mean composites of the average size of connected regions of simultaneous events (SC,
Fig. 9.11) show high values over the subtropical Atlantic Ocean and the adjacent
southeastern South American continent. However, during La Niña times, these high
values reach farther north towards the western Amazon Basin. In contrast, during
El Niño episodes the values of SC decrease in these regions, in particular over the
Amazon Basin north of 10◦S, when compared to the neutral ENSO stages.
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Figure 9.7.: L1-distance matrix L between the ranks of the local clustering coefficients (RLC)
obtained for events below the 10th percentile (strong precipitation events) for all
time windows.

Figure 9.8.: (A) ENSO index MEI, (B) row-wise mean (ML) of the L1-distance matrix L between
the ranks of the local clustering coefficients (RLC), and (C) time evolution of global
clustering (GC) obtained for strong evapotranspiration events.
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Figure 9.9.: As Fig. 9.8 for strong precipitation events.

Figure 9.10.: Composites of the local clustering coefficient (LC) based on strong evapotran-
spiration events for warm (A), neutral (B), and cold (C) ENSO conditions, and
difference of composites for warm and neutral ENSO conditions (D). Note the
reduced values over the central and western Amazon Basin for El Niño conditions.
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Figure 9.11.: As in Fig. 9.10 for the average size of connected components of simultaneous
extremes (SC). Note the reduced values over the central and western Amazon
Basin for El Niño conditions. Because the size of the horizontal grid cells varies
depending on the latitudinal position, the values of SC have been corrected by
weighting them with cos(λ), where λ denotes the latitudinal angle.
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9.6. Discussion

9.6.1. Impacts of ENSO cycles on moisture divergence

We observe that in the eastern and northern Amazon Basin, the distribution of M
is generally shifted towards higher values during El Niño conditions (Figures 9.2
and 9.3). Given the results reported by other studies (Hastenrath and Heller, 1977;
Ropelewski and Halpert, 1987; Marengo et al., 2008; Bookhagen and Strecker, 2010),
we attribute this to negative precipitation anomalies in the northern and eastern
Amazon Basin during warm ENSO phases. In the La Plata Basin, positive as well as
negative extremes of M become more pronounced (Fig. 9.4), which indicates a general
increase in variance (implying both stronger precipitation and evapotranspiration
extremes) during El Niño events.

Negative correlation values between MEI and M in the La Plata Basin for daily
means as well as positive correlation values for the absolute values of 10th percentile
thresholds are associated with positive precipitation anomalies in southeastern South
America during El Niño events (Hastenrath and Heller, 1977; Bookhagen and Strecker,
2010; Cazes-Boezio et al., 2003). However, this does not apply to the 90th percentile
thresholds of M , for which, surprisingly, correlations are also positive over Uruguay.
Thus, the entire distribution of M becomes wider during El Niño episodes, with
stronger precipitation as well as stronger evapotranspiration events. These results may
be relevant in view of the importance of the La Plata Basin concerning agriculture
and hydropower generation (e.g. Barros et al., 2006).

Positive correlations between MEI and daily mean and strong evapotranspiration
event thresholds of M as well as negative correlations between MEI and strong
precipitation event thresholds in the Atacama Desert agree with earlier studies, which
have found positive precipitation anomalies during La Niña episodes (Houston, 2006b)
as well as positive evapotranspiration anomalies during El Niño episodes (Houston,
2006a).

9.6.2. Impacts of ENSO cycles on clustering of moisture divergence

Since no clear and significant impacts of ENSO on the clustering characteristics of
strong precipitation events were found in the MERRA data, we will again focus on
strong evapotranspiration events in the following section.

The distance matrix L (Fig. 9.6) obtained from the procedure described in Section
9.4 allows to identify times for which the spatial structures of LC resemble a specific
characteristic pattern, indicated by low values of Lμν . Specifically, such low values
of appear during El Niño conditions, which is supported by negative correlations
between MEI and the row-wise mean of L, i.e. ML (Fig. 9.8). This result indicates
that during El Niño periods, LC assumes a characteristic spatial pattern which
exhibits lower variability in terms of mutual L1-distances than for neutral and La
Niña periods. The negative correlation between MEI and GC (Fig. 9.6) implies
that during El Niño phases the spatial pattern of synchronized evapotranspiration
extremes is characterized by decreased GC. This is interpreted as an overall tendency
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towards diminished spatial coherence of strong evapotranspiration events during El
Niño conditions. Mean composites of LC for the different ENSO periods (Fig. 9.10)
reveal that decreased values over the Amazon Basin are mainly responsible for this
decline in GC.

Due to the interpretations of LC and SC (cf. Section 9.4), the results for SC are
expected to be similar to those obtained for LC. Neglecting the influence of temporal
lags, high values of LC computed from a network based on ESsym should typically
imply high values of SC as well, since the probability of link lengths in networks
typically decays roughly exponentially with the spatial distance between two sites
(Donges et al., 2009a; Radebach et al., 2013). For the case of surface air temperatures,
this is reflected by the emergence of densely connected structures in networks during
some time intervals, most remarkably during El Niño and La Niña periods (Tsonis
and Swanson, 2008; Paluš et al., 2011; Radebach et al., 2013).

Consistent with these expectations, the mean composites of SC (Fig. 9.11) indeed
reveal a reduced average size of connected components of simultaneous evapotran-
spiration events over the Amazon Basin during warm ENSO phases as compared to
neutral and cold periods. The implications are thus qualitatively the same as for LC,
although the obtained patterns of SC exhibit less spatial variability and are in this
sense less informative than those of LC. However, the consistency between the results
of LC and SC provides further support of the drawn conclusions.

For strong events of evapotranspiration, we have found a clear block structure in the
L1-distance matrix L between the LC patterns for different time intervals (Fig. 9.6).
This is expressed by a relatively high degree of similarity of LC patterns within
the periods 1979-1998 as well as 1992-2012 (with a mean L1-distance of 2.45 · 107),
while the L1-distance of LC patterns between these two periods is relatively high (on
average 2.57 · 107). The appearance of these two blocks in L may indicate a possible
transition from one climate “state” to another one (characterized by a somewhat
different typical clustering pattern of extreme evapotranspiration events) during the
mid 1990s. In fact, a recent study (Meehl et al., 2011) suggested a shift from El Niño
dominated decades lasting until 1998 to a La Niña dominated period during the last
15 years, which is consistent with our finding. Specifically, the mean value of MEI
for the time period from 1979 to 1998 is +0.54, while the mean value of MEI for the
years from 1992 to 2011 is +0.19 (−0.12 for the years from 1998 to 2011). Recently,
this shift was suggested as a possible explanation of the non-increasing global mean
temperature in the last 15 years by the cooling effect of the Pacific Ocean during
colder ENSO conditions (Kosaka and Xie, 2013).

9.6.3. Different types of El Niño events

During the last years, several studies have reported evidence for a multi-phase nature
of ENSO with at least two qualitatively different types of El Niño events (Ashok
et al., 2007; Yeh et al., 2009; Hendon et al., 2009; Kim et al., 2011; Hu et al., 2012).
However, we note that the assignment of El Niño events to these two subclasses is not
fully consistent in the literature and partly depends on the chosen ENSO index. We
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suggest that a more detailed discrimination of ENSO phases allows deeper insights
into the spatiotemporal organization of vertical moisture flux extremes. Here, we
resolve the above results with respect to the two types of El Niño events and divide all
El Niño events into the following two subclasses: Nino1, consisting of the particularly
strong classical El Niño events in 1982, 1987, and 1997, and Nino2, consisting of the
anomalous events in 1986, 1990/1991, 1993/1994, 2002, and 2004 (Hendon et al.,
2009). We remark that in (Hu et al., 2012), the El Niño event of 1987 is - in contrast
to our assignment and (Yeh et al., 2009; Hendon et al., 2009; Kim et al., 2011) -
taken to be an anomalous El Niño (i.e., Nino2) event. The classical El Niño (Nino1)
is also referred to as eastern Pacific El Niño, while the anomalous El Niño (Nino2) is
also called central Pacific El Niño, or El Niño Modoki (Ashok et al., 2007; Yeh et al.,
2009). Nino2 is characterized by positive sea surface temperature (SST) anomalies in
the central Pacific Ocean, but relatively cool SSTs to the east and west, while during
(classical) Nino1 conditions, the SST maximum is located in the eastern Pacific Ocean.
Furthermore, the two types of El Niño differ in their teleconnection patterns between
the tropics and midlatitudes. The frequency of Nino2 episodes has increased during
recent decades, possibly because of weakened tropical easterly winds (Ashok et al.,
2007; Yeh et al., 2009). For a detailed analysis of the distinct impacts of Nino1 and
Nino2 on precipitation over South America, we refer to (Hill et al., 2009; Hill et al.,
2011; Tedeschi et al., 2013), while (Li et al., 2011) investigate the general impact on
the climate of the Amazon Basin.

Constructing composites of means (Fig. 9.12) and 90th percentiles (Fig. 9.13) of
moisture divergence as well as LC (Fig. 9.14) for these two types separately, we
find that the impact of El Niño events on these three fields is mainly due to the
classical type (Nino1), which shows much stronger deviations from neutral ENSO
conditions than the anomalous type (Nino2). We thus infer that pronounced SST
anomalies in the eastern Pacific ocean contribute much stronger to the described
impacts of ENSO on moisture divergence than SST anomalies in the central Pacific
ocean. This is consistent with results in (Radebach et al., 2013), where distinctively
different expressions in the properties of networks constructed from global surface air
temperatures were found for the two El Niño types. In particular, the impact of El
Niño events on GC was also mainly assigned to classical El Niño events in that study.
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Figure 9.12.: Composites of mean daily moisture divergence (M) for El Niño events of type
Nino1 (A), Nino2 (B), and difference between Nino1 and Nino2 (C).
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Figure 9.13.: Composites of 90th percentile thresholds of daily moisture divergence (M) for El
Niño events of type Nino1 (A), Nino2 (B), and difference between Nino1 and
Nino2 (C).
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Chapter 9. Impacts of the El Niño Southern Oscillation on Extreme Moisture Divergence

Figure 9.14.: Composites of LC for El Niño events of type Nino1 (A), Nino2 (B), and difference
between Nino1 and Nino2 (C).
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9.7. Conclusion

It was shown that magnitudes as well as spatial clustering of strong evapotranspiration
events over South America are strongly affected by the phase of the El Niño Southern
Oscillation (ENSO). The strongest impacts of ENSO were found over the Amazon
Basin, which is particularly important since this region is known to host globally
relevant and particularly vulnerable ecosystems (Davidson et al., 2012). Specifically,
the Amazon rainforest is believed to be one potential tipping element of the Earth’s
global climate system (Lenton et al., 2008).

The key observations in this chapter are: i) The magnitudes of moisture divergence
respond positively to ENSO variability (indicating negative precipitation anomalies)
in the Amazon Basin with highest values during El Niño periods. ii) The network-
derived local clustering of extreme positive events of moisture divergence is reduced
in a characteristic way during El Niño events in the Amazon Basin. This indicates
reduced spatial coherence of synchronized extreme evapotranspiration events in this
region. We find that the described dependence on ENSO variability is mainly due to
the three major (classical) El Niño events in 1982, 1987, and 1997, while all other
events (in particular the anomalous Modoki events) play a minor role. A shift in
ENSO activity during the late 1990’s from warmer (El Niño) to cooler (La Niña)
predominant conditions reported by others (Meehl et al., 2011) is reflected by a shift
in the pattern similarity of the network’s local clustering coefficients computed for
extreme positive events of moisture divergence. iii) We find that our results obtained
from complex network theory are consistent with, but more detailed than results
obtained from a direct estimation of the spatial coherence of events.

It should be emphasized that these results were only found for the complex network
analysis of extreme positive moisture divergence (i.e., evapotranspiration) events,
and no corresponding significant results were found for extreme negative moisture
divergence (i.e. precipitation) events.

In the previous chapters, all analysis was static in the sense that one network was
constructed from the information obtained for the entire available time span. Here,
by using sliding windows of networks, we showed how this can be generalized to
a dynamical analysis. In future work, the impacts of La Niña episodes should be
analyzed in more detail, as in this chapter the main focus was on the influence of El
Niño episodes.
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Chapter 10.

Conclusion

10.1. Contributions of this thesis

The aim of this dissertation was to advance the understanding of the collective
dynamics of extreme rainfall. Traditionally, spatial patterns encoding the co-variability
of climatic time series are derived in terms of empirical orthogonal functions (EOFs),
derived from principal component analysis (PCA) of the dataset’s covariance matrix.
However, no technique based on the spectral decomposition of the covariance matrix
is suitable for analyzing the co-variability of extreme events: If computed directly for
the original time series, the covariance matrix will only capture the first two moments
of the data distributions, and can thus not provide any information on the behavior
of the extreme events, which are located in the tails of the frequency distribution.
Alternatively, the covariance matrix could be applied to binary extreme event series
derived from the original time series. However, this approach would not be suited
to deal with varying time lags between events at different locations. Furthermore, a
well-known caveat of PCA is that the corresponding eigenvectors (i.e., the EOFs) are
not statistically independent for non-Gaussian data distributions (which is the case for
extreme rainfall events), and can therefore not be assigned to independent dynamical
modes of the system. A new methodology had thus to be found to overcome these
problems. For this purpose, a theoretical framework for the analysis of synchronization
phenomena of extreme events in significantly interrelated time series was developed
on the basis of complex network theory. In principle, this framework can be applied
to time series obtained from many kinds of complex systems as a general tool to
explore data and, from the resulting synchronization patterns, develop hypotheses
about the underlying driving mechanisms. Alongside with providing the means to
analyze a given interactive system in terms of synchronization of extreme events, this
mathematical tool can in certain situations be used to forecast these extreme events
on a statistical footing.

The main idea of the methodology developed in this thesis is to identify the time
series encoding the behavior of the single parts of a complex system with network nodes,
and represent statistically significant synchronizations of extreme events between
different parts of the system by network links. The rationale behind this approach is
that the complex synchronization phenomena emerging from the interactions become
accessible in terms of the network topology. Synchronization of all pairs of time
series was estimated in terms of several modifications of the similarity measure Event
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Synchronization, which allows for the delays between synchronous events to vary
in time. A framework to determine the statistical significance of the outcomes of
this measure in view of varying event rates and clustered event distributions was
proposed, and networks were constructed with respect to this framework. In addition
to established network measures, several new measures on undirected as well as on
directed and weighted networks were introduced for a quantitative analysis of the
network topology.

The theoretical framework was used to study the spatial characteristics of extreme
rainfall synchronicity in South America on the basis of gridded, high spatiotemporal
resolution satellite data. Climate networks were constructed by representing the
strongest and most significant values of the similarity measure as network links. The
topology of the resulting networks could then be analyzed in terms of various network
measures, for which specific climatological interpretations were proposed in order to
put their spatial distribution into relation with the underlying climatic mechanisms.
We focussed on the following three specific fields of application:

Climatic Analysis

In a first step, we analyzed the dynamical properties of extreme rainfall events of
the South American monsoon by constructing undirected networks and quantifying
different aspects of their topology using the standard measures degree, betweenness
centrality, and clustering, as well as the measures mean geographical distance, long-
ranged directedness, and directionality, which were introduced here. Upon providing
climatic interpretations for these measures, we were able to show that their spatial
distribution reveals several of the main features underlying the South American
monsoon system.

Some of the features we revealed were already known in the literature, and in this
sense some of the results can be understood as a proof of concept of the methodology.
These include the main convergence zones, namely the Intertropical as well as
the South Atlantic Converge Zones, as well as areas with frequent development of
Mesoscale Convective Systems in southeastern South America. Events associated with
these large rainfall clusters are typically above the 95th percentile, and contribute
large fractions of total seasonal precipitation. Most importantly, however, we could
reveal the dominant propagation route of rainfall events from the Amazon Basin
along the eastern slopes of the Andes to the subtropics, driven by the trade winds
and the South American Low-Level Jet (chapter 4). The specific role these features
played for the dynamics of extreme events was not known due to lacking analytical
tools. In this sense, these results in fact contribute to the understanding of the South
American climate system, expressed as climatic interpretations of spatial pattern
derived from the synchronization structure of extreme rainfall events.

The following results could not have been derived using more traditional data
analysis techniques, and thus provide new insights into the functioning the South
American monsoon systems: By constructing networks separately for the two phases
of the the main pattern of variability associated with the monsoon system, namely the
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so-called South American rainfall dipole, we could reveal the main synchronization
pathways of extreme events corresponding to the two phases. This also shed light
on the interplay of tropical wind systems and subtropical frontal systems for driving
extreme rainfall propagation. Most notably, over the entire South American continent,
the synchronization patterns of the two phases of the rainfall dipole are determined
by the atmospheric waves that trigger frontal systems in the subtropics. This
suggests that that the well-known rainfall dipole is only the most pronounced part
of an oscillation that extends beyond the equator. In the corresponding chapter 5
we showed that these results are consistent with the general understanding of the
monsoon system, although they go beyond the hitherto known.

In chapter 9, we generalized our approach to study temporal changes in the network-
derived spatial patterns using a sliding window approach. We could show that the
network clustering of reanalysis-derived evapotranspiration events strongly responds
to the El Niño Southern Oscillation, with characteristic patterns of low global clus-
tering recurring during El Niño events.

Associated publications: Boers et al., Geophysical Research Letters (2013, P1),
Boers et al., Geophysical Research Letters (2014, P2), Rheinwalt et al. (submitted,
P3), Boers et al., Climate Dynamics (accepted, P8)

Prediction of extreme events

In view of the potential predictability of extreme rainfall events, directed networks
were constructed in order to analyze the synchronization structure of extreme events
in a time-resolved manner. This allowed us to determine the geographical source
regions of three-hourly extreme events in the main river catchments along the Andean
mountain range, which we resolved with respect to the temporal and spatial scales of
these events. The mountainous terrain at the eastern slopes of the Andes is exposed
to high hazard risks in form of floods and landslides, calling for an assessment of
the potential predictability of extreme rainfall events. We could show that for the
catchments south of 20◦S, extreme rainfall typically originates from frontal systems
approaching from the central Argentinean plains, while the catchments north of 20◦S
are mainly affected by squall lines originating from the Amazon Basin (chapter 6).

By introducing the new measure network divergence in chapter 7, a general frame-
work for the statistical prediction of extreme events in complex systems could be
established. By applying this measure to three-hourly rainfall data, we were able
to identify southeastern South America as a pronounced source region for extreme
rainfall events, and could further show that these events typically propagate towards
the eastern slopes of the Central Andes. These results were surprising at first, since
the low-level moisture flow is directed in the opposite direction, leading from the
tropics along the eastern Andean slopes towards southeastern South America. We
identified the interplay of the low-level moisture flow from the tropics, frontal systems
approaching from the South, and the topography of the Andes as the responsible
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mechanism: This interplay leads to the establishment of a wind channel from the
western Amazon Basin towards southeastern South America, where the warm, moist
air collides with cold air in the aftermath of the frontal system. This causes the forma-
tion of large rainfall clusters which, as a result of the northward moving low-pressure
anomaly and its alignment with the Andes mountain range, propagate towards the
Central Andes, with sometimes devastating impacts for the local populations. On
the basis of these insights, we could formulate a simple forecast rule which predicts
60% of these events in the Central Andes, and even 90% during El Niño conditions.

Associated publications: Boers et al. (submitted, P4), Boers et al., Nature
Communications (2014, P5), Boers et al. (in preparation, P6)

Evaluation of Climate Models

While state-of-the-art global and regional climate models perform reasonably well in
reproducing mean values of climatic observables, they are known to have substantial
difficulties to correctly reproduce the tails of the distributions. In particular, extreme
rainfall events are notoriously hard to adequately represent. While local rainfall
distributions produced by climate models can be easily analyzed and thus evaluated,
the dynamical representation of extreme events and their spatial interrelations had
not yet been analyzed on the basis of the produced data. In chapter 8, we com-
pared three observational (TRMM, TRMM RT, and GPCP) and three model-derived
(ERA-interim, ECHAM6, and ETA) datasets regarding their implementation of the
synchronization structure of extreme rainfall events using the methodologies developed
in this thesis. The presented results suggest that none of the model-derived datasets
could adequately reproduce the spatial patterns found for the satellite-derived and
gauge-calibrated TRMM dataset, which has been used for all investigations in the
previous chapters. Surprisingly, however, spatial synchronization patterns derived
from the ECHAM6 and the ETA data are still closer to the patterns found for TRMM
than the patterns observed for the ERA-interim reanalysis product.

Associated publications: Boers et al., Journal of Climate (accepted, P7)

10.2. Outlook

In this thesis, statistical significance was mainly estimated on the level of the measure
of similarity. By estimating and correcting for the effects of the spatial embedding,
also a statement on statistical significance on the level of the network measures
was provided, in the sense that the actual spatial distributions of given network
measures were compared to the outcomes expected from suitable statistical null
models. However, there remain several open problems concerning the statistical
significance of spatial patterns, which should be addressed in future work.

It will furthermore be interesting to see how the framework introduced in this thesis
performs when applied to other variables than rainfall, such as different climatic
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observables, but also to time series from other complex systems, e.g. from economics
or biology. For such applications, one would not need to restrict oneself to extreme
events, as the methodology is general enough to be applied to any kind of events
which are assumed to synchronize. A possible example for other kind of events would
be spiking neurons, or certain repeating symbols, i.e. characteristic sequences or
patterns in the time series. Along these lines, more general synchronization patterns
than just those exhibited by extreme events could be treated.

In chapter 9 we studied temporal changes of network measures computed from
reanalysis-derived moisture divergence and explained them in a climatological context.
Unfortunately, the short time span for which satellite-derived and high-resolution
rainfall data is available (15 years) does not yet allow to study corresponding evolving
patterns of reliable estimates of extreme rainfall events in a statistically sound way.
However, given the 3-hourly resolution of the TRMM 3B42 dataset, it should not
take long until the time series are long enough to use a sliding window approach
or at least construct the networks separately for the different stages of the El Niño
Southern Oscillation and obtain statistically significant results.

In the context of model intercomparison, it would be very interesting to extend the
evaluation performed in chapter 8 to the entire globe, employing the complete set of
coupled ocean-atmosphere general circulation models included in the Coupled Model
Intercomparison Project, which forms the baseline for estimating climate change
projections of the Intergovernmental Panel on Climate Change (IPCC). Unfortunately,
however, the typical horizontal resolutions on which these models are integrated are
still rather coarse, with the ECHAM6 model being an exception. This imposes caveats
for an analysis of the dynamics of extreme rainfall along the lines of chapter 8. If the
problem of the spatial resolution could be overcome, it would furthermore be very
interesting to see how the spatial patterns encoding the synchronization structure of
extreme events would react to changing the parameters or equations of the climate
models under consideration. This could lead to substantial improvements of the
dynamical implementation of extreme rainfall in these models.
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Appendix A.

Additional figures for chapter 4
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Appendix A. Additional figures for chapter 4

Figure A.1.: Same as Figure 4.1 but for the fall season from March to May (MAM).
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Figure A.2.: Same as Figure 4.1 but for the winter season from June to August (JJA).
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Figure A.3.: Same as Figure 4.1 but for the spring season from September to November (SON).
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Figure A.4.: Same as Figure 4.2 but for the fall season from March to May (MAM).
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Figure A.5.: Same as Figure 4.2 but for the winter season from June to August (JJA).
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Figure A.6.: Same as Figure 4.2 but for the spring season from September to November (SON).
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Figure A.7.: Same as Figure 4.1 but computed for events above the 95th percentile for the
monsoon season from December to February (DJF).
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Figure A.8.: Same as Figure A.7 but for the fall season from March to May (MAM).
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Figure A.9.: Same as Figure A.7 but for the winter season from June to August (JJA).
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Figure A.10.: Same as Figure A.7 but for the spring season from September to November
(SON).
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Appendix B.

Additional figures for chapter 5

In chapter 5, we claimed that computing the degree (DG) for the two phases of
the South American rainfall dipole using τmax = 2 days or τmax = 1 day instead
of τmax = 3 days does not qualitatively change our results. Here, we show the
corresponding results. Note that the directionality measure (DR, right column) is
still computed for τmax = 0 and thus identical with the version presented in chapter
5.
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Figure B.1.: Same as Figure 5.2 in chapter 5, but the isochrones (right column) computed for
τmax = 2 days.
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Figure B.2.: Same as Figure 5.2 in chapter 5, but the isochrones (right column) computed for
τmax = 1 day.
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Appendix C.

Additional figures for chapter 6
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Figure C.1.: Average number of 3-hourly events per burst of consecutive events of type local
and short (A: LSE), local and long-lasting (B: LLE), spatially extensive (C: SEE),
and spatially extensive long-lasting (D: SLE).
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Figure C.2.: Average percentage of total DJF rainfall contributed to the catchments C1 to C7
by each single burst of consecutive events of type local and short (A: LSE), local
and long-lasting (B: LLE), spatially extensive (C: SEE), and spatially extensive
long-lasting (D: SLE).
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Additional figures for chapter 7

Figure D.1.: Linear trends for the average magnitude of the strongest 5 events averaged over
boxes 6 and 7 in Figure 1A during each DJF season for rainfall derived from the
gauge-calibrated TRMM 3B42 V7 (blue solid line) and outgoing longwave radiation
(OLR) derived from MERRA for the period from 1979 to 2013 (red solid line) and
for comparison for the period from 1998 to 2012 (red dashed line). The lower
outgoing longwave radiation, the higher are corresponding rainfall amounts.
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Figure D.2.: Linear trends for the number of extreme events per season for MERRA outgoing
longwave radiation (OLR, 252 events in total) for all four three-month seasons.
Areas for which results are significant at the 0.05 significance level are marked
by the black contour line. The lower outgoing longwave radiation, the higher are
corresponding rainfall amounts.
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Figure D.3.: Trends for the average magnitude of the strongest 5 events per season for MERRA
outgoing longwave radiation (OLR) for all four three-month seasons. Areas for
which results are significant at the 0.05 significance level are marked by the black
contour line.
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Figure D.4.: A. Strength out of the eastern Central Andes (ECA), Sout
i (ECA). We emphasize

that there are no high values over southeastern South America (SESA). B. Strength
into ECA, Sin

i (ECA). Note in particular the high values over SESA. Derived from
the gauge-calibrated TRMM 3B42 V7.
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Figure D.5.: Average spatial extent of area receiving extreme events during prediction times and
subsequent two days as fraction of box size and in km2. Derived from the (near)
real-time product TRMM 3B42 V7 RT.
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Figure D.6.: Relationship between elevation (meters above sea level) and relative fraction of
extreme events during prediction times, spatially averaged over boxes four to seven
in the ECA (see Figure 1A in the main text), for all DJF seasons. Derived from
the (near) real-time product TRMM 3B42 V7 RT.
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Figure D.7.: Same as Figure D.6 but for DJF seasons with positive (a), neutral (b) and
negative (c) ENSO conditions based on the Multivariate ENSO index (MEI),
retrieved from https://climatedataguide.ucar.edu/climate-data/multivariate-enso-
index, cf. (Wolter and Timlin, 1998).

177



Appendix D. Additional figures for chapter 7

Figure D.8.: Relative fraction of extreme events (above 99th percentile) during prediction times
and subsequent two days for all DJF seasons. Derived from the (near) real-time
product TRMM 3B42 V7 RT.
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Figure D.9.: Relative fraction of total DJF rainfall during prediction times and subsequent two
days. Derived from the (near) real-time product TRMM 3B42 V7 RT.
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Figure D.10.: Same as Figure D.8 but for DJF seasons with positive, neutral, and negative
ENSO conditions based on the Multivariate ENSO index (MEI).

Figure D.11.: Same as Figure D.9 but for DJF seasons with positive, neutral, and negative
ENSO conditions based on the Multivariate ENSO index (MEI).
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Figure D.12.: The Heidke-Skill-Score (HSS) for all ENSO conditions as a function of the
threshold for the definition of SESA times and the number of extreme events
in the ECA that are to be predicted. Derived from the (near) real-time product
TRMM 3B42 V7 RT.
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Figure D.13.: Same as Figure D.12 but for positive ENSO conditions based on the Multivariate
ENSO index (MEI).
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Figure D.14.: Network divergence ΔS (left) and Strength out of SESA Sout(SESA) (right) for
the 95th to 99th percentiles as rainfall event thresholds. Note that the pattern
indicating the propagation of extreme rainfall from SESA to ECA only appears
for the 97th and higher percentiles.
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Figure D.15.: Comparison of the sum of Strength into and out of SESA S(SESA) for five
different datasets: TRMM 3B42 V7, the satellite-gauge combination of the Global
Precipitation Climatology Project (GPCP 1DD V1.2), the European Centre for
Medium-Range Weather Forecasts Interim Reanalysis (ERA-interim), MERRA, as
well as for output of a control run of the Brazilian ETA-CPTEC regional climate
model (driven with boundary conditions from ERA-interim), which is used for
operational weather forecast in South America. Since the available time period
and temporal resolution varies among the different datasets, we resampled all
datasets to daily values from 1998 to 2008, and summed the strength into and out
of SESA for a maximal delay of τmax = 5 days. TRMM is compared to GPCP on
a grid with horizontal resolution of 1◦, while the comparison to the other datasets
is carried out on a horizontal resolution of 0.75◦. For TRMM (on both horizontal
grid resolutions) as well as GPCP, the propagation of extreme events from SESA
to ECA is clearly recognizable. However, the reanalysis products ERA and MERRA
do not show this propagation, indicating that this climatological feature could not
have been found using only these datasets. Furthermore, the ETA-CPTEC model
does not show the propagation neither, suggesting that weather forecast performed
with this model will not be able to predict these events. If the propagation signal
is not present for this sum of In- and Out-Strength using daily data, it could not
be present for the Out-Strength computed for higher temporal resolutions, since
in the latter case only a subset of values of Event Synchronization is summed
over.184



Figure D.16.: Composites of rainfall and geopotential height and wind fields at 850mbar showing
the propagation from SESA to ECA from 12 hours before to 30 hours after rainfall
peaks at SESA.
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