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v Laboratoire AstroParticule et Cosmologie, Université Paris VII, 11, Place Marcelin Berthelot, F-75231 Paris Cedex 05, France
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Abstract

An upper limit of 16% (at 95% c.l.) is derived for the photon fraction in cosmic rays with energies greater than 1019 eV, based on
observations of the depth of shower maximum performed with the hybrid detector of the Pierre Auger Observatory. This is the first such
limit on photons obtained by observing the fluorescence light profile of air showers. This upper limit confirms and improves on previous
results from the Haverah Park and AGASA surface arrays. Additional data recorded with the Auger surface detectors for a subset of the
event sample support the conclusion that a photon origin of the observed events is not favored.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Cosmic rays; Ultra-high energy photons; Extensive air showers; Pierre Auger Observatory
1. Introduction

The origin of ultra-high energy (UHE) cosmic rays
above 1019 eV is still unknown [1]. Their energy spectrum,
arrival directions and composition can be inferred from air
shower observations. However, agreement has not yet been
reached on whether there is a break in the energy spectrum
around EGZK � 6 · 1019 eV (=60 EeV). Such a steepening
in the energy spectrum is expected if UHE cosmic rays
come from cosmologically distant sources [2], as is sug-
gested by their overall isotropy. There have been claims,
as yet unconfirmed, for clustering on small angular scales,
and correlations with possible classes of sources. More-
over, results concerning the nuclear composition are still
inconclusive.

While this deficit of robust observational results is partly
due to the extremely small fluxes and, correspondingly,
small numbers of events at such high energies, discrepan-
cies might arise also from the different experimental tech-
niques used. For instance, the determination of the
primary energy from the ground array alone relies on the
comparison with air shower simulations and is thus prone
to uncertainties in modelling high energy interactions.
Therefore it is essential to test results from air shower
* Corresponding author. Tel.: +49 7247 82 3732; fax: +49 7247 82 4075.
E-mail address: markus.risse@ik.fzk.de (M. Risse).
observations independently. The present work provides
just such a cross-check for the upper limit derived previ-
ously from ground arrays on the photon fraction in UHE
cosmic rays. An upper limit is set on the photon fraction
above 10 EeV which is twice as strong as those given
previously.

Photons are expected to dominate over nucleon prima-
ries in non-acceleration (‘‘top-down’’) models of UHE cos-
mic-ray origin [3–5] which have been invoked in particular
to account for a continuation of the flux above EGZK with-
out a spectral feature as indicated by AGASA data [6].
Thus, the determination of the photon contribution is a
crucial probe of cosmic-ray source models. Separating pho-
ton-induced showers from events initiated by nuclear
primaries is experimentally much easier than distinguishing
light and heavy nuclear primaries. As an example, average
depths of shower maxima at 10 EeV primary energy are
predicted to be about 1000 g cm�2, 800 g cm�2, and
700 g cm�2 for primary photons, protons, and iron nuclei,
respectively. Moreover, analyses of nuclear composition
are uncertain due to our poor knowledge of hadronic inter-
actions at very high energies. Photon showers, being driven
mostly by electromagnetic interactions, are less affected by
such uncertainties and can be modelled with greater confi-
dence. To avoid the uncertainty from modelling hadronic
interactions, we adopt an analysis method that does not
require the simulation of nuclear primaries but compares
data to photon simulations only.

mailto:markus.risse@ik.fzk.de
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So far limits on the UHE photon fraction in cosmic rays
have been set by ground arrays alone. By comparing the
rates of near-vertical showers to inclined ones recorded
by the Haverah Park shower detector, upper limits (95%
c.l.) of 48% above 10 EeV and 50% above 40 EeV were
deduced [7]. Based on an analysis of muons in air showers
observed by the Akeno Giant Air Shower Array
(AGASA), the upper limits (95% c.l.) to the photon frac-
tion were estimated to be 28% above 10 EeV and 67%
above 32 EeV [8]. An upper limit of 67% (95% c.l.) above
125 EeV was derived in a dedicated study of the highest
energy AGASA events [9].

In this work, we obtain a photon limit from the direct

observation of the shower profile with fluorescence tele-
scopes, using the depth of shower maximum Xmax as the
discriminating observable. To achieve a high accuracy in
reconstructing the shower geometry, we make use of the
‘‘hybrid’’ detection technique, i.e. we select events observed
by both the ground array and the fluorescence telescopes
[10]. For a subset of the event sample, a sufficient number
of ground detectors were also triggered, yielding a variety
of additional shower observables. Considering as example
the signal risetime measured with the ground array, we
demonstrate the discrimination power of these independent
observables to photon-induced showers.

The plan of the paper is as follows. In Section 2, predic-
tions for the UHE photon fraction in cosmic-ray source
models and features of photon-initiated air showers are
summarised. Section 3 contains the description of the data
and of photon simulations. In particular, the data selection
criteria are discussed. A careful choice of the quality and
fiducial volume cuts is required to control a possible exper-
imental bias for photon primaries. In Section 4, the method
for deriving a photon fraction is described and applied to
the data. An example of the discrimination power of
observables registered by the surface array is shown in Sec-
tion 5. Finally in Section 6, we discuss the prospects for
improving the bound on UHE photons.

2. Photons as cosmic-ray primaries

The theoretical challenge of explaining acceleration of
protons to the highest energies is circumvented in non-
acceleration models [3]. A significant fraction of the UHE
cosmic rays are predicted by these models to be photons
(see e.g. [4,5]). For instance, UHE photons may be pro-
duced uniformly in the universe by the decay/annihilation
of relic topological defects (TD) [11]. During propagation
to Earth, they interact with background radiation fields
and most of them cascade down to GeV energies where
the extragalactic photon flux is constrained by the EGRET
experiment; the remaining UHE photons can contribute to
the cosmic-ray flux above 10 EeV. By contrast in the Super
Heavy Dark Matter (SHDM) model [12], the UHE pho-
tons are generated in the decay of relic metastable particles
(such as ‘‘cryptons’’ [13]) which are clustered as cold dark
matter in our Galaxy. Since the halo is believed to be effec-
tively transparent to such UHE photons, they would be
directly observed at Earth with little processing. In the
Z-Burst (ZB) scenario [14], photons are generated from
the resonant production of Z bosons by UHE cosmic
neutrinos annihilating on the relic neutrino background.
A distinctive feature of all these models is the prediction
of a large photon flux at high energies, as is expected from
considerations of QCD fragmentation [15]. As an illustra-
tion, Fig. 1 (taken from [5]) shows a SHDM model fit to
the highest energy AGASA events; photons are the domi-
nant particle species above �5 · 1019 eV.

Photons can also be produced in ‘‘conventional’’ accel-
eration models by the GZK-type process from p0 decays.
Typically, the corresponding photon fluxes are relatively
small. For instance, based on the spectrum obtained by
the HiRes experiment [16], the expected photon fraction
is only of order 1% or below [5].

It should be noted that the photon flux arriving at Earth
for a specific source model is subject to uncertainties arising
from photon propagation: assumptions concerning the
very low frequency (few MHz) radio background and
inter-galactic magnetic fields must be made [4,5]. The typ-
ical range of energy loss lengths usually adopted for pho-
tons are 7–15 Mpc at 10 EeV and 5–30 Mpc at 100 EeV.

Ultra-high energy photons can be detected by the parti-
cle cascades they initiate when entering the atmosphere of
the Earth. Compared to air showers initiated by nuclear
primaries, photon showers at energies above 10 EeV are
in general expected to have a larger depth of shower max-
imum Xmax and to contain fewer secondary muons. The
latter is because the mean free paths for photo-nuclear
interactions and direct muon pair production are more
than two orders of magnitude larger than the radiation
length. Consequently, only a small fraction of the primary
energy in photon showers is generally transferred into sec-
ondary hadrons and muons.
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In Fig. 2, simulated Xmax values for showers initiated by
primary photons, protons and iron nuclei are shown as a
function of the primary energy. The large Xmax values for
photon showers at 10 EeV are essentially due to the small
multiplicity in electromagnetic interactions, in contrast to
the large number of secondaries produced in inelastic inter-
actions of high-energy hadrons. Secondly, because of the
LPM effect [21], the development of photon showers is even
further delayed above �10 EeV. Another feature of the
LPM effect is an increase of shower fluctuations: Xmax fluc-
tuations for photon showers are �80 g cm�2 at 10 EeV,
compared to �60 g cm�2 and �20 g cm�2 for primary pro-
tons and iron nuclei, respectively.

At higher energies, cosmic-ray photons may convert in
the geomagnetic field and create a pre-shower before enter-
ing the atmosphere [22]. The energy threshold for geomag-
netic conversion is �50 EeV for the Auger southern site.
Conversion probability and pre-shower features depend
both on primary energy and arrival direction. In the case
of a pre-shower, the subsequent air shower is initiated as
a superposition of lower-energy secondary photons and
electrons. For air showers from converted photons, the
Xmax values and the fluctuations are considerably smaller
than from single photons of same total energy. From the
point of view of air shower development, the LPM effect
and pre-shower formation compete with each other.

In this work, cascading of photons in the geomagnetic
field is simulated with the PRESHOWER code [23] and
shower development in air, including the LPM effect [21],
is calculated with CORSIKA [24]. For photo-nuclear pro-
cesses, we assume the extrapolation of the cross-section as
given by the Particle Data Group [25], and we employed
QGSJET 01 [17] as a hadron event generator.
3. The data set

The Auger data used in this analysis were taken with a
total of 12 fluorescence telescopes situated at two different
sites [26], during the period January 2004 to February
2006. The number of surface detector stations deployed
[27] grew during this period from about 150 to 950. A
detailed description of the Auger Observatory is given in
[28].

For the present analysis, we selected hybrid events, i.e.
showers observed both with (one or more) surface tanks
and telescopes. Even when only one tank is triggered, the
angular accuracy improves from P2� for observation with
one telescope alone to �0.6� for hybrid detection [10,29],
thus reducing significantly the corresponding uncertainty
in the reconstruction of Xmax.

The reconstruction of the shower profiles [26,30] is
based on an end-to-end calibration of the fluorescence tele-
scopes [31]. Monthly models for the atmospheric density
profiles are used which were derived from local radio
soundings [32]. An average aerosol model is adopted based
on measurements of the local atmospheric aerosol content
[33]. Cloud information is provided by IR monitors, posi-
tioned at the telescope stations [33]. Cross-checks on clouds
are obtained from measurements with LIDAR systems
(near the telescopes) and with a laser facility near the center
of the array [33,34]. The Cherenkov light contribution of
the shower is calculated according to [35]. An energy
deposit profile is reconstructed for each event. A Gaisser–
Hillas function [36] is fitted to the profile to obtain the
depth of shower maximum, and the calorimetric shower
energy is obtained by integration. It has been checked that
this function provides a reasonable description of the sim-
ulated shower profiles independent of the primary particle,
provided all four parameters of the Gaisser–Hillas fit are
allowed to vary.

A correction for missing energy, the ‘‘invisible’’ energy
fraction carried by neutrinos and high-energy muons, has
to be applied. The fraction of missing energy depends on
the primary particle type. In case of nuclear primaries,
the correction amounts to 7–14%, with a slight dependence
on primary energy and the hadronic interaction model used
[37,38]. For photon primaries, the missing energy fraction
is much smaller and amounts to �1% [38]. We applied
the correction assuming photon primaries, so that the
energy threshold chosen in the analysis corresponds to
the effective energy of primary photons.

For the current analysis, the differences between the
energy estimates for different primaries are relatively small
(�10%) due to the near-calorimetric measurement of the
primary energy by the fluorescence technique. Moreover,
relative to photon showers, the energies of nuclear prima-
ries are slightly underestimated. This would slightly deplete

an event sample from showers ascribed to nuclear prima-
ries or, correspondingly, increase the number ascribed to
photons. Thus, the limit derived here for photons is conser-
vative with respect to the missing energy correction. It
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seems worthwhile to mention that for ground array studies,
where the energy of photons can be underestimated by
more than 30% (see, for instance, [8]), such corrections to
the primary energy which depend on the unknown primary
particle type must be treated with particular caution.

The following quality cuts are applied for event selection
(in Appendix A, distributions of cut variables are displayed):

• Quality of hybrid geometry: distance of closest approach
of the reconstructed shower axis to the array tank with
the largest signal <1.5 km, and difference between the
reconstructed shower front arrival time at this tank
and the measured tank time < 300 ns.

• Primary energy E > 1019 eV.
• Xmax observed.
• Number of phototubes in the fluorescence detector trig-

gered by shower P6.
• Quality of Gaisser–Hillas (GH) profile fit: v2(GH) per

degree of freedom <6, and v2(GH)/v2(line) < 0.9, where
v2(line) refers to a straight line fit.

• Minimum viewing angle of shower direction towards the
telescope >15�.

• Cloud monitors confirm no disturbance of event obser-
vation by clouds.

Care must be taken about a possible bias against photon
primaries of the detector acceptance. In Fig. 3 we show the
acceptance for photons and nuclear primaries at different
steps of the analysis, computed using shower simulations
with the CONEX code [39] which reproduces well the
CORSIKA predictions for shower profiles. Light emission
and propagation through the atmosphere and the detector
response were simulated according to [40]. As can be seen
from the figure, the acceptances are comparable for all
types of primaries after trigger (top plot). However, after
profile quality cuts (middle plot) the detection efficiency
for photons is smaller by a factor �2 than for nuclear
primaries, because primary photons reach shower maxi-
mum at such large depths (of about 1000 g cm�2, see
Fig. 2) that for a large fraction of showers the maximum
is outside the field of view of the telescopes. This holds,
in particular, for near-vertical photon showers: since the
Auger Observatory is located at an average atmospheric
depth of 880 g cm�2 (measured at a point close to the cen-
tre of the array) near-vertical photon showers reach the
ground before being fully developed. Such photon showers
are rejected by the quality cuts, while most of the showers
generated by nuclear primaries (with their smaller Xmax)
are accepted. An illustration of the effect of this cut on pho-
ton showers is given in Fig. 4. To reduce the corresponding
bias against photons, near-vertical events are excluded in
the current analysis. Since the average depth of shower
maximum increases with photon energy before the onset
of pre-shower, a mild dependence of the minimum zenith
angle with energy is chosen (see below).

For similar reasons, a cut on distant events is intro-
duced. The telescopes do not observe shower portions near
the horizon, as the field of view is elevated by �1.5�. Thus,
the atmospheric depth which corresponds to the lower edge
of the field of view of a telescope decreases with distance.
Another source of a bias against photon showers is due
to fluorescence light absorption. The brightest parts of
the shower profile, i.e. those around shower maximum,
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For near-vertical photon showers, Xmax is below the field of view of the
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Requiring a minimum zenith angle in the analysis, the reconstruction bias
for photons is strongly reduced.

Table 1
Event identifier, primary energy, and depth of shower maximum Xmax for
the selected events. Also given are the mean depth of shower maximum
hX c

maxi and its rms fluctuation DX c
max predicted from simulations assuming

primary photons. In the last column, the differences Dc (in standard
deviations) between photon prediction and data are listed (see text). A
caveat is given in the text concerning the use of these data for elongation
rate studies

Event
ID

Energy
[·1018 eV]

Xmax

[g cm�2]
hX c

maxi
[g cm�2]

DX c
max

[g cm�2]
Dc

[std. dev.]

668949 17 765 985 71 2.9
673409 12 760 996 82 2.7
705583 11 678 973 77 3.6
737165 202 821 948 27 3.3
828057 13 805 978 68 2.4
829526 12 727 996 85 3.0
850018 54 774 1050 120 2.2
931431 24 723 1022 89 3.2
935108 14 717 992 68 3.8
986990 15 810 1000 87 2.1

1109855 16 819 1019 95 2.0
1171225 15 786 993 74 2.6
1175036 17 780 1001 100 2.1
1257649 10 711 971 76 3.2
1303077 13 709 992 85 3.1
1337921 18 744 1029 93 2.9
1421093 25 831 1028 93 2.0
1535139 15 768 998 77 2.8
1539432 12 787 975 76 2.3
1671524 13 806 978 77 2.1
1683620 20 824 1035 80 2.5
1683856 18 763 981 92 2.3
1684651 12 753 991 79 2.8
1687849 16 780 1001 71 2.9
1736288 10 726 981 71 3.3
1826386 17 747 994 84 2.8
1978675 10 740 978 76 2.9
2035613 11 802 998 90 2.1
2036381 27 782 1057 101 2.6
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are for photon showers generally closer to the ground. The
line of sight towards the shower maximum traverses
regions of higher air density. Hence, for similar geometrical
distances to the shower maximum, the light signal of the
deeper photon showers is more attenuated than for nuclear
primaries. The consequence is that the distance range
below which the telescopes are fully efficient for detecting
showers of a given energy, is smaller for photon primaries
than for nuclear primaries. This range increases with pri-
mary energy. Thus, an energy-dependent distance cut is
applied for the data selection, in addition to excluding
showers at small zenith angles:

• Zenith angle >35� + g1(E), with g1(E) = 10(lgE/eV �
19.0)� for lgE/eV 6 19.7 and g1(E) = 7� for lgE/eV >
19.7;

• Maximum distance of telescope to shower impact
point < 24 km + g2(E), with g2(E) = 12(lgE/eV � 19.0)
km.

The acceptances after the fiducial volume cuts are
applied are shown in Fig. 3 (bottom plot). The differences
between photons and nuclear primaries are now signifi-
cantly reduced, with the acceptances being comparable at
energies 10–20 EeV. With increasing energy, the acceptance
for nuclear primaries shows a modest growth, while the
photon acceptance is quite flat in the investigated energy
range. Only a minor dependence on the nuclear particle
type (proton or iron) is seen. Comparing photons to
nuclear primaries, the minimum ratio of acceptances is
�min ’ 0.80 at energies 50–60 EeV. At even higher energies,
the pre-shower effect becomes increasingly important, and
acceptances for photons and nuclear primaries become
more similar.

The acceptance curves shown in Fig. 3 can be used to
correct for the detector acceptance when comparing a mea-
sured photon limit to model predictions, using the model
energy spectra as an input. Since the acceptance ratios after
the fiducial volume cuts are not far from unity, and since
the photon acceptance is quite flat in the energy range
below 100 EeV, the corresponding corrections are expected
to be relatively small and to differ very little between typical
model predictions. In this work, to obtain an experimental
limit to the photon fraction without relying on assumptions
on energy spectra of different primaries, a correction to the
photon limit is applied by conservatively adopting the min-
imum ratio of acceptances �min (a detailed derivation of the
approach is given in Appendix B).

Applying the cuts to the data, 29 events with energies
greater than 10 EeV satisfy the selection criteria. Due to
the steep cosmic-ray spectrum, many events in the sample
do not exceed 20 EeV. The main shower characteristics
are summarised for all events in Table 1. Fig. 5 shows
the longitudinal profile of an event reconstructed with
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Table 2
Conservative estimates of the contributions to the statistical and system-
atic uncertainty of depth of shower maximum for the data and for the
photon simulations

Data DX stat
max [g cm�2] DX syst

max [g cm�2]

Profile fit 20 10
Atmosphere 12 8
Geometry reconstruction 10 5
Others 10 5

Simulation

Reconstructed energy of event 5 13
Photo-nuclear cross-section – 10
Hadron generator – 5

Total 28 23
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16 EeV and Xmax = 780 g cm�2. The Xmax distribution of
the selected events is displayed in Fig. 6.

For the conditions of the highest-energy event in the
sample, event 737165 (see also [41]) with a reconstructed
energy of 202 EeV assuming primary photons, the proba-
bility of photon conversion in the geomagnetic field is
�100%. Consequently, the simulated value of the average
depth of shower maximum is relatively small, and shower
fluctuations are considerably reduced.

It should be noted that the event list given in Table 1
results from selection criteria optimized for the current pri-
mary photon analysis. These data cannot be used for stud-
ies such as elongation rate measurements without properly
accounting for acceptance biases. For instance, the mini-
mum zenith angle required in this analysis depletes the data
sample from showers with relatively small depths of shower
maximum, with the effect being dependent on primary
energy.

The uncertainty DXmax of the reconstructed depth of
shower maximum is composed of several contributions,
some of which may vary from event to event. In this work,
we adopt conservative, overall estimates for the current
statistical and systematic uncertainties which are applied
to all selected events. These uncertainties are expected to
decrease significantly in the future. However, even when
adopting conservative estimates, the present analysis is
not limited by the measurement uncertainties but by event
statistics. This is due to the fact that shower fluctuations
for photons are considerably larger than the measurement
uncertainties.

Main contributions to DXmax are the uncertainties in the
profile fit, in shower geometry and in atmospheric condi-
tions (see Table 2). Uncertainties in the Xmax reconstruc-
tion from atmospheric conditions arise from using
average models of the density profiles (monthly averages)
and of the aerosol content. The effect on Xmax is studied
by changing the atmospheric models and repeating the
event reconstruction. The statistical uncertainty in the
determination of the average model results in a systematic
uncertainty of the Xmax reconstruction; it amounts to
�8 g cm�2 (�3 g cm�2 from density profiles, �7 g cm�2

from aerosol model). A larger uncertainty comes from
the spread around the averages due to time variations of
atmospheric conditions (a detailed discussion of the density
profile variations can be found in [32]). This results in a sta-
tistical uncertainty of the reconstructed Xmax value of
�12 g cm�2 (�6 g cm�2 from density profiles, �10 g cm�2

from aerosol model).
An uncertainty in the X c

max values predicted from pho-
ton simulations results from the uncertainty in the recon-
structed primary energy. Currently, the systematic
uncertainty in energy is 25% [26]. For an elongation rate
of �130 g cm�2 per energy decade for photons above
10 EeV, this corresponds to a systematic uncertainty of
�13 g cm�2. The elongation rate for primary photons
(see Fig. 2) is relatively large here due to the LPM effect.
At highest energies, the elongation rate decreases with the
onset of photon pre-shower in the geomagnetic field.

It should be noted that this contribution to the system-
atic uncertainty from the energy reconstruction does not
refer to the observed Xmax value itself. Rather, it enters
indirectly in the analysis since the primary energy is needed
as simulation input.

Another uncertainty comes from the extrapolation of
the photo-nuclear cross-section to high energy. Larger val-
ues than adopted here for the cross-section would make
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showers initiated by photons more similar to nuclear
primaries and reduce the predicted values for X c

max. Based
on recent theoretical work on the maximum possible rise
of the photo-nuclear cross-section with energy [42] an
uncertainty of �10 g cm�2 is estimated for the predicted
depths of shower maximum for photons [43].

Contrary to the case of nuclear primaries, uncertainties
from modelling high-energy hadron interactions are much
less important in primary photon showers. From simula-
tions using different hadron event generators, an uncer-
tainty of �5 g cm�2 is adopted.

Adding in quadrature the individual contributions (see
Table 2) gives a statistical uncertainty DX stat

max ’ 28 g cm�2

and a systematic uncertainty DX syst
max ’ 23 g cm�2.

For each event, 100 showers were simulated as photon
primaries. Since photon shower features can depend in a
non-trivial way on arrival direction and energy, the specific
event conditions were adopted for each event. Results of
the photon simulations are also listed in Table 1.

4. Results

In Fig. 7 the predictions for X c
max for a photon primary

are compared with the measurement of Xmax = 780 g cm�2

for event 1687849 (Fig. 5). With hX c
maxi ’ 1000 g cm�2,

photon showers are on average expected to reach maxi-
mum at depths considerably greater than that observed
for real events. Shower-to-shower fluctuations are large
due to the LPM effect. For this event, the expectation for
a primary photon differs by Dc ’ +2.9 standard deviations
from the data, where Dc is calculated from

Dc ¼
hX c

maxi � X maxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDX c

maxÞ
2 þ ðDX stat

maxÞ
2

q : ð1Þ

For all events, the observed Xmax is well below the average
value expected for photons (see Table 1). The differences Dc

between photon prediction and data range from +2.0 to
+3.8 standard deviations, see Fig. 8 and Table 1. It is extre-
mely unlikely that all 29 events were initiated by photons
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max distribution expected for photon showers (solid
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(probability �10�10), so an upper limit to the fraction of
cosmic-ray photons above 10 EeV can be reliably set.

Due to the limited event statistics, the upper limit cannot
be smaller than a certain value. The relation between the
minimum possible fraction f min

c of photons that could be
excluded for a given number of events nm (or: the minimum
number of events nmin

m required to possibly exclude a frac-
tion fc) is given by

f min
c ¼ 1� ð1� aÞ1=nm ; and nmin

m ¼ lnð1� aÞ
lnð1� fcÞ

; ð2Þ

with a being the confidence level of rejection. This holds for
the case that no efficiency correction has to be applied
(�min = 1). For 29 events and �min ’ 0.80, the minimum
possible value for an upper limit to be set at a 95% confi-
dence level is �12%. The theoretical limit is reached only
if a photon origin is basically excluded for all events.

The calculation of the upper limit is based on the statis-
tical method introduced in [9] which is tailor-made for rel-
atively small event samples. For each event, trial values
v2 ¼ D2

c are calculated with Dc according to Eq. (1). We dis-
tinguish between statistical and systematic uncertainties for
the depths of shower maximum. The method in [9] is
extended to allow for a correlated shift of the observed
Xmax values for all selected events, where the shifted value
is drawn at random from a Gaussian distribution with a
width DX syst

max ¼ 23 g cm�2. For the shifted data, new v2 val-
ues are calculated from Eq. (1). Many such ‘‘shifted’’ event
sets are generated from the data and compared to artificial
data sets using photon simulations. The chance probability
p(fc) is calculated to obtain artificial data sets with v2 values
larger than observed as a function of the hypothetical pri-
mary photon fraction fc. Possible non-Gaussian shower
fluctuations are accounted for in the method, as the prob-
ability is constructed by a Monte Carlo technique. The
upper limit f ul

c , at a confidence level a, is then obtained
from pðfc P �minf ul

c Þ 6 1� a, where the factor �min = 0.80
accounts for the different detector acceptance for photon
and nuclear primaries (Section 3).

For the Auger data sample, an upper limit to the photon
fraction of 16% at a confidence level of 95% is derived. In
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Fig. 9, this upper limit is plotted together with previous
experimental limits and some illustrative estimates for
non-acceleration models. We have shown two different
expectations for SHDM decay [5,13] to illustrate the sensi-
tivity to assumptions made about the decay mode and the
fragmentation, as well as the normalisation of the spectrum
(see Fig. 1). The derived limit is the first one based on
observing the depth of shower maximum with the fluores-
cence technique. The result confirms and improves previ-
ous limits above 10 EeV that came from surface arrays. It
is worth mentioning that this improved limit is achieved
with only 29 events above 10 EeV, as compared to about
50 events in the Haverah Park analysis and about 120
events in the AGASA analysis.

5. Discrimination power of surface array observables

In the current analysis, data from the surface array are
used only to achieve a high precision of reconstructed
shower geometry in hybrid events. A single tank was suffi-
cient for this. However, observables registered by the sur-
face array are also sensitive to the primary particle type
and can be exploited for studies of primary photon show-
ers. In spite of the incomplete coverage of the array during
the data taking period considered here (which means many
events were poorly contained), for about half of the
selected events a standard array reconstruction [27] can
be performed. Several observables can then be used for pri-
mary photon discrimination, for instance the lateral distri-
bution or the curvature of the shower front [44].

An example for another observable is given by the rise-

time of the shower signal in the detectors, one measure of
the time spread of particles in the shower disc. For each
triggered tank, we define a risetime as the time for the inte-
grated signal to go from 10% to 50% of its total value. By
interpolation between risetimes recorded by the tanks at
different distances to the shower core, the risetime at
1000 m core distance is extracted after correcting for azi-
muthal asymmetries in the shower front. The risetime is
sensitive to the primary particle type because of its correla-
tion with shower muons and the depth of shower maxi-
mum: contrary to the shower muons, electrons undergo
significant deflections with corresponding time delays.
Thus, larger values for the risetime are observed if the sig-
nal at ground is dominated by the electromagnetic shower
component. Primary photon showers generally have fewer
muons and, additionally, the shower maximum is closer to
ground compared to showers from nuclear primaries. Cor-
respondingly, risetimes are expected to be relatively large
for photon primaries.

For the specific event shown in Fig. 5, the measured rise-
time is compared to the simulated distribution in Fig. 10.
For this and the other hybrid events with array reconstruc-
tion, the observed risetime does not agree well with the pre-
dictions for primary photons, supporting the conclusion
that a photon origin of the observed events is not favored.
In future photon analyses, the independent information on
the primary particle from the Auger ground array and fluo-
rescence telescope data can be used to cross-check each
other. Combining the different shower observables will fur-
ther improve the discrimination power to photons.

6. Outlook

The upper limit to the photon fraction above 10 EeV
derived in this work from the direct observation of the
shower maximum confirms and reduces previous limits
from ground arrays. The current analysis is limited mainly
by the small number of events. The number of hybrid
events will considerably increase over the next years, and
much lower primary photon fractions can be tested. More-
over, the larger statistics will allow us to increase the
threshold energy above 10 EeV where even larger photon
fractions are predicted by some models.

As an example, let us consider an increase in data statis-
tics above 10 EeV by about an order of magnitude com-
pared to the current analysis, as is expected to be reached
in 2008/2009. From Eq. (2), a sensitivity to photon frac-
tions down to �1.5% can be inferred. More realistically,
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let us assume for the measured Xmax values a distribution
similar to the one currently observed as in Fig. 8. Then,
an upper limit of �5% could be achieved. With the
increased run time, a comparable number of events as for
the present analysis would be reached above 30–35 EeV.
If an upper limit similar to that reached here was found,
but at this higher energy, it would be well below existing
limits and severely constrain non-acceleration models.1

The sensitivity of the hybrid analysis might be further
improved in the future by combining different shower
observables measured in the same event, such as depth of
shower maximum, risetime and curvature. We did not
include ground array observables for the limit derived in
this analysis since we wanted to independently check previ-
ous ground array results. Further information, e.g. the
width of the shower profile, might also be added in future
work to achieve better separation of deeply penetrating
nuclear primaries and primary photons.

If only surface detector data is used and hybrid detec-
tion is not required then the event statistics are increased
by about an order of magnitude. Care must however be
taken about a possible bias against photons in an array-
only analysis because of the different detector acceptance
for photon and nuclear primaries. Also, compared to the
near-calorimetric energy determination in the fluorescence
technique, the energy estimated from array data shows a
stronger dependence on the primary type and is more
strongly affected by shower fluctuations. Ways to reduce
a possible photon bias and to place robust limits to pho-
tons are being investigated. For instance, the technique
introduced in [7] of comparing event rates of near-vertical
and inclined showers can be further exploited.
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Appendix A. Distributions of quality cut variables

In Fig. A.1, distributions of cut variables are plotted.
For each graph, all quality cuts (see Section 3) except the
one for the variable shown were applied.

Appendix B. Acceptance correction

The fraction of photons fc in the cosmic-ray flux inte-
grated above an energy threshold E0 is given by

fcðE P E0Þ ¼
R

E0
UcðEÞdER

E0
UcðEÞdE þ

P
i

R
E0

UiðEÞdE
ðB:1Þ

where Uc(E) denotes the differential flux of photons and
Ui(E), i = p,He, . . .the fluxes of nuclear primaries.

The fraction of photons f det
c as registered by the detector

is given by

f det
c ðE P E0Þ

¼
R

E0
AcðEÞUcðEÞdER

E0
AcðEÞUcðEÞdE þ

P
i

R
Ei

AiðEÞUiðEÞdE
ðB:2Þ

with Ac(E) and Ai(E) being the detector acceptances to
photons and nuclear primaries, respectively. Ei denotes
the effective threshold energy for primary nucleus i.

Thus, the upper limit f ul;det
c obtained to the registered

data, f ul;det
c > f det

c , needs to be corrected to resemble an
upper limit to the fraction of photons in the cosmic-ray
flux. For the present analysis, a conservative and model-
independent correction is applied as follows.

E0 corresponds to the analysis threshold energy assum-
ing primary photons. Ei is related to E0 by the ratios of
the missing energy corrections mc (for photons) and mi

(for nuclear primaries),

Ei ¼ E0 �
mi

mc
: ðB:3Þ

Since mc ’ 1.01 and mi ’ 1.07 � 1.14, Ei > E0. Thus,
replacing Ei by E0,

f det
c ðE P E0Þ

>

R
E0

AcðEÞUcðEÞdER
E0

AcðEÞUcðEÞdE þ
P

i

R
E0

AiðEÞUiðEÞdE

¼
R

E0
AcðEÞUcðEÞdE

R
E0

AcðEÞUcðEÞdE þ
P

i

R
E0

AcðEÞ
�iðEÞ UiðEÞdE

: ðB:4Þ
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Fig. A.1. Distributions of variables after applying all quality cuts except the one for the variable shown. The distributions are plotted for data (filled
circles), primary photons (dashed black histograms), and primary protons (solid blue histograms). The arrow indicates the cut position. Plotted are
distributions of distances of the tank with the largest signal to the shower core (upper left panel), of the time residual between that tank and the expected
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In the last step, the acceptance ratio �i(E) = Ac(E)/ Ai(E)
was introduced.

From the fiducial volume cuts shown in Fig. 3, it can be
seen that Ac ’ const in the energy range of interest. Also,
from Fig. 3 the minimum acceptance ratio �min 6 �i(E)
can be extracted (in the current analysis, �min = 0.80).
Hence, it follows:

f det
c ðE P E0Þ >

R
E0

UcðEÞdER
E0

UcðEÞdE þ 1
�min

P
i

R
E0

UiðEÞdE

> �min �
R

E0
UcðEÞdER

E0
UcðEÞdE þ

P
i

R
E0

UiðEÞdE

¼ �min � fcðE P E0Þ; ðB:5Þ

where it was used that 1
�min

> 1.
Consequently, an upper limit f ul

c to the fraction of pho-
tons in the cosmic-ray flux can conservatively be calculated
as
f ul
c ¼ f ul;det

c =�min > f det
c =�min > fc: ðB:6Þ

The upper limit obtained this way does not depend on
assumptions for the differential fluxes Uc(E) and Ui(E).
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