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Capsule:  A Latin-American community of scientists engaged in atmospheric research using lidar 33 

has been built during the last 15 years, and in the process has generated a regional lidar network.   34 

 35 

Abstract: 36 

 Sustained and coordinated efforts of lidar teams in Latin America at the beginning of the 37 

21st century have built LALINET (Latin American Lidar NETwork), the only observational 38 

network in Latin America created by the agreement and commitment of Latin American scientists.  39 

They worked with limited funding but an abundance of enthusiasm and commitment toward their 40 

joint goal.  Before LALINET, there were a few pioneering lidar stations operating in Latin 41 

America, described briefly here.  Bi-annual Latin American Lidar Workshops, held from 2001 to 42 

the present, supported both the development of the regional lidar community and LALINET.  At 43 

those meetings, lidar researchers from Latin America meet to conduct regular scientific and 44 

technical exchanges among themselves and with experts from the rest of the world.  Regional and 45 

international scientific cooperation has played an important role for the development of both the 46 

individual teams and the network.  The current LALINET status and activities are described, 47 

emphasizing the processes of standardization of the measurements, methodologies, calibration 48 

protocols, and retrieval algorithms.  Failures and successes achieved in the buildup of LALINET 49 

are presented.  In addition, the first LALINET joint measurement campaign and a set of aerosol 50 

extinction profile measurements obtained from the aerosol plume produced by the Calbuco 51 

volcano eruption on April 22, 2015, are described and discussed. 52 

  53 
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Introduction: 54 

 From its establishment, the World Meteorological Organization (WMO) has promoted the 55 

development of local, regional, and global atmospheric observational networks, providing 56 

standardized, quality-controlled information (WMO, 1947).  The role of observational networks 57 

has increased and evolved over the last half century.  Nowadays, observational networks gather 58 

information about the state of the atmosphere with passive and active instruments, both at the 59 

surface and in space.  Such information is of utmost importance for data assimilation by models 60 

forecasting the status of the earth-atmosphere system at multiple spatial and temporal scales.  It is 61 

also fundamental for climate research and the development of policy responses, becoming a key 62 

component of the emerging Global Framework for Climate Services (WMO, 2011). 63 

 Networks of ground-based lidar (LIght Detection And Ranging) are now playing an 64 

important role at meteorological institutions worldwide for both services and research.  That 65 

information complements satellite observations, because ground-based lidars can provide regular, 66 

high-resolution vertical profiles of atmospheric components like aerosols, clouds, ozone, and water 67 

vapor, all of which have been defined as essential climate variables (Bojinski et al., 2014).  68 

Satellites in contrast provide global observations of the atmospheric components but they are 69 

limited by temporal variation at a particular place and also by limited resolution in time and height.  70 

However, building a regional network of lidars is probably one of the most challenging of any 71 

ground-based atmospheric network-building processes.  Among its challenges is the different 72 

instrumental design of existing lidars, mainly locally built at scientific and academic institutions.  73 

Another important challenge is the standardization of the diverse calibration, measurement, and 74 

data processing procedures.  Because most of the lidars are built based on local research interests, 75 
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it is also necessary to reconcile local scientific interests and practices with the ones from the 76 

network. 77 

 EARLINET (European Aerosol Research Lidar Network), http://www.earlinet.org/, 78 

established in 2000, is the pioneer regional lidar network (Bösenberg, et al., 2000; Pappalardo et 79 

al., 2014).  Its establishment has been supported by funding from the European Community, 80 

together with funds from national governments for their local lidar teams.  More recently, under 81 

the WMO Global Atmospheric Watch (GAW) aerosol program, a global aerosol network has been 82 

created.  GALION (GAW Aerosol Lidar Observation Network), http://alg.umbc.edu/galion/, is 83 

devoted specifically to aerosols and has been organized as a network of lidar networks.  It is 84 

composed of the existing regional lidar networks EARLINET, AD-NET (Asian Dust Network) 85 

http://www-lidar.nies.go.jp/ (Shimizu et al., 2004; Sugimoto et al., 2015), CISLiNet (Community 86 

of Independent States Lidar Network) (Chaikovsky et al., 2006), MPLNET (Micro-Pulse Lidar 87 

Network) http://mplnet.gsfc.nasa.gov/ (Welton et al., 2001), NDACC (Network for the Detection 88 

of Atmospheric Composition Change) http://www.ndsc.ncep.noaa.gov/ (Kurylo, 1991), CREST-89 

CLN (NOAA Cooperative Remote Sensing Science and Technology Lidar Network), formerly 90 

REALM (Regional East Aerosol Lidar Mesonet) http://noaacrest.org/about/facilities/crest-lidar-91 

network (Hoff et al., 2002), and LALINET (Latin America Lidar Network) http://lalinet.org/. 92 

 LALINET, the youngest GALION affiliate, was created during the First Workshop on 93 

Lidar Measurements in Latin America (WLMLA), held March 6-8, 2001, in Camagüey, Cuba.  94 

The report of the workshop stated, “A longer-term plan was also discussed to establish a network 95 

of LIDARs in Latin America using identical instruments, data processing, and measurement 96 

protocols, including taking measurements on the same days, and during satellite overpasses.  This 97 

http://www-lidar.nies.go.jp/
http://mplnet.gsfc.nasa.gov/
http://www.ndsc.ncep.noaa.gov/
http://noaacrest.org/about/facilities/crest-lidar-network
http://noaacrest.org/about/facilities/crest-lidar-network
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America’s LIDAR Network (ALINE) was strongly endorsed by the participants, who agreed to 98 

work together toward its establishment.” (Robock and Antuña, 2001a). 99 

 Here we detail the first 12 years of LALINET, from the first ideas in 2001 to official 100 

recognition by WMO in 2013, a history that is intertwined inseparably with the WLMLA history 101 

and international cooperation. The present status of the network and future perspectives are also 102 

discussed. 103 

 104 

Antecedents: 105 

20th Century lidar projects in Latin America: 106 

 The first lasers, developed in the early 1960s, found immediate application for measuring 107 

atmospheric properties (Fiocco and Grams, 1964).  The pioneering lidar project in Latin America 108 

(LA), and one of the few in the world at that time, operated in Kingston, Jamaica.  It began in April 109 

1964 (AFOSR, 1972) and continued until 1979 (Phillip et al., 1985).  Located in Stony Hill, 110 

Jamaica (18.0°N, 76.8°W), and operated by the Physics Department of the University of West 111 

Indies, its main goal was to study atmospheric density profile using measurements of molecular 112 

scattering.  However, it also proved useful from the very beginning for measuring stratospheric 113 

aerosol layers (Clemesha et al., 1966).  Figure 1 shows the Mark 1 lidar system, the first of the two 114 

instruments developed by the project.  The Mark 1 lidar was the result of a feasibility study, 115 

designed to measure Rayleigh scattering up to about 50 km.  It was replaced by the Mark 2, which 116 

ultimately reached 100 km. 117 

 The next lidar was developed at INPE (Instituto Nacional de Pesquisas Espaciais - 118 

Brazilian National Space Research Institute), São José dos Campos, Brazil (23°S, 46°W) in 1969 119 

for the study of mesosphere dynamics as its main interest, but stratospheric aerosol measurements 120 
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were also conducted (Clemesha and Rodrigues, 1971).  In 1972, the capability for measuring the 121 

sodium layer in the high mesosphere/lower thermosphere was installed (Clemesha and Simonich, 122 

1978).  By 2007, the capability for measuring mesopause temperatures between 88 and 100 km 123 

was added, using a Sodium Doppler lidar (Clemesha et al., 2010). 124 

 A Russian lidar for stratospheric aerosol measurements was installed at Camagüey, Cuba 125 

(21.4°N, 77.9°W) late in 1988, originating the Camagüey Lidar Station (CLS) which belongs to 126 

the Instituto Nacional de Meteorología (INSMET).  The instrument operated irregularly up to 127 

1997, but the team was able to maintain regular measurements of the Mt. Pinatubo stratospheric 128 

aerosols between January 1992 and November 1993 (see Figure 1 of Stenchikov et al., 1998).  In 129 

addition, cirrus cloud measurements were conducted.  The project history, including the transition 130 

from the CLS to the Grupo de Óptica Atmosférica de Camagüey (GOAC), has been previously 131 

described (Antuña et al., 2012a).  132 

 The University of Illinois Coupling, Energetics and Dynamics of Atmospheric Regions 133 

(CEDAR) lidar was installed at the Arecibo Observatory, Puerto Rico (18.4°N, 66.8°W) in January 134 

1989.  It was operated as a Rayleigh and sodium lidar during the months of January, March and 135 

April 1989 (Kane et al., 1993).  In April 1990, a Doppler Rayleigh lidar system developed in situ 136 

began to operate (Tepley et al., 1991; Tepley and Rojas, 1993).  This lidar station, not associated 137 

with LALINET, is still operative (http://www.naic.edu/~lidar/lidar_home.html). 138 

 The fifth, and the most successful lidar project in LA, was developed by the Centro de 139 

Investigaciones en Láseres y Aplicaciones (CEILAP), belonging to the Instituto de Investigaciones 140 

Científicas y Técnicas del Ministerio de Defensa and the Consejo Nacional de Investigaciones 141 

Científicas y Técnicas, located at Villa Martelli, Buenos Aires, Argentina (34.6°S, 58.5°W).  A 142 

first attempt to build a lidar and install it at the El Leoncito Astronomical Observatory in the Andes 143 

http://www.naic.edu/~lidar/lidar_home.html
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province of San Juan, in cooperation with the Istituto di Fisica dell'Atmosfera, Italy, and the Centre 144 

National de la Recherche Scientifique (CNRS), France, was abandoned because of the remote 145 

location of the site (Congedutti et al, 1993).  The first lidar was built and installed in 1994 and 146 

began measurements in September the same year at CEILAP in cooperation with Pierre Flamant 147 

from CNRS and the Ecole Polytechnique, France (Giraldez et al., 1995; Quel, 2011). 148 

 The sixth lidar project is located at the Centro de Lasers e Aplicações, Instituto de Pesquisas 149 

Energéticas e Nucleares (IPEN), São Paulo University, Brazil.  During a visit of Alexandros 150 

Papayannis from National Technical University of Athens (NTUA) to IPEN on August 27, 1998, 151 

an informal agreement was reached with NTUA.  After the visit, he and Jacques Porteneuve from 152 

CNRS designed the elastic system that was built at IPEN and became operative in 2000 (Landulfo 153 

et al., 2001).  154 

 By the end of the 20th century, six lidar projects existed in LA, but only four of them were 155 

operative.  There were almost no contacts or exchanges between them. 156 

 157 

The Series of Workshops on Lidar Measurements in Latin America: the Backbone of 158 

LALINET: 159 

In 1994, at the North Atlantic Treaty Organization (NATO) Advanced Research Workshop 160 

on the effects of the Mount Pinatubo eruption on the atmosphere and climate, held in Rome on 161 

September 26-30, 1994, an agreement was reached among several of the attendees to conduct a 162 

workshop on lidar measurements in Latin America.  The workshop, planned to be held at 163 

Camagüey, Cuba the following year did not take place because of local organizational difficulties. 164 

I and II WLMLA: 165 
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 Working on his Ph.D., Juan Carlos Antuña-Marrero compiled the available stratospheric 166 

lidar measurements after the 1991 Mt Pinatubo eruption for comparison with the spatial-temporal 167 

coincident Stratospheric Aerosol Gas Experiment II (SAGE II) satellite measurements (Antuña et 168 

al., 2002a, 2003).  In the process, he learned about the existing worldwide lidar projects at that 169 

time and got in contact with most of the teams, including the ones in LA.  E-mail exchanges began 170 

with Barclay Clemesha, leader of the lidar team in São José dos Campos, Brazil, who provided the 171 

backscattering ratio monthly mean profiles from his site during the Mt. Pinatubo eruption.  Joint 172 

analysis of the collected measurements showed that LA was one the regions with poor coverage 173 

of stratospheric lidars at the time of the Mt. Pinatubo eruption.  In addition, by 1998 the SAGE II 174 

instrument, in orbit from October 1984, had far surpassed its expected lifetime of two years.  The 175 

expected replacement, the SAGE III instrument, was on board the Russian satellite Meteor-3M in 176 

a polar orbit, conducting aerosol profile measurements over mid and high latitudes but not over 177 

the tropics.  Under those circumstances, the global monitoring of any potential stratospheric 178 

aerosol plume from a tropical volcanic eruption would rely on tropical stratospheric lidars. 179 

 In July 1998, the lead author and René Estevan (then a technician and 1st year student of 180 

electric engineering at Camagüey University, Cuba) attended the 19th International Laser Radar 181 

Conference (ILRC).  They presented a poster at the meeting, hosted at the US Naval Academy, 182 

Annapolis, Maryland.  However, the most important issue was learning about the international 183 

lidar community and the particulars of organizing such a meeting in further exchanges with the 184 

organizers and attendees.  185 

 Extensive and fruitful discussions took place between Juan Carlos Antuña-Marrero and 186 

Alan Robock about all the former issues.  They arrived at a joint commitment to rescue the failed 187 

earlier initiative of a WLMLA.  A proposal was submitted in 1998 to the Program to Expand 188 
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Scientific Capacity in the Americas (PESCA), a call from the Inter-American Institute for Global 189 

Change Research (IAI).  The project called “Characterization of Stratospheric and Tropospheric 190 

Aerosols over Central and South America,” was led by Pablo Canziani from the Department of 191 

Atmospheric Sciences at the University of Buenos Aires, and with the participation of CLS and 192 

the Department of Environmental Sciences of Rutgers University.  Among its goals was the 193 

improvement of observations of aerosols in this region.  It included support for a WLMLA, held 194 

in Camagüey, Cuba on March 6-8, 2001 with 23 attendees (Table 1, Figure 2).  The World Climate 195 

Research Program and the Stratospheric Processes and their Relationship to Climate Program co-196 

sponsored this meeting.  It became the first IAI workshop held in Cuba since the beginning of IAI 197 

(Robock and Antuña 2001a; 2001b). 198 

 The proposal included the first acronym selected for the future lidar network: ALINE 199 

(American Lidar NEtwork).  It was envisaged as a hemispheric network, taking into account that 200 

the Americas are the only continent having land from the North to the South Poles (Antuña et al., 201 

2002b).  Pierre Flamant, in further exchanges, suggested the acronym LALINET (Latin American 202 

Lidar NETwork), which ended up being used broadly by the lidar community in LA, and is used 203 

now for consolidating a LA lidar network.  Nevertheless, we have not given up the goal of ALINE 204 

as a hemispheric lidar network in the future. 205 

 Because of the success of the I WLMLA, the idea for conducting the II WLMLA gained 206 

momentum.  It was organized also by the CLS team in cooperation with Alan Robock, and 207 

conducted in Camagüey, Cuba, February 17-21, 2003.  The main financial support came from the 208 

European Space Agency (ESA), and additional funding contributed by the IAI, the Department of 209 

Environmental Sciences of Rutgers University, and the Cuban Meteorological Institute.  The II 210 

WLMLA established several of the core practices for the following workshops.  One of the most 211 
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important was a lidar training course for new students and researchers in the field.  They continue 212 

to be conducted in each workshop held up to this date.  The II WLMLA reaffirmed the 213 

“gentleman’s agreement” reached at the first one, a term selected for defining the way we work by 214 

cooperation among members with no formal structure, reaching decisions by consensus.  In 215 

addition, the rotation of the WLMLA hosted by different lidar teams came into practice, with an 216 

offer made by Álvaro Bastidas to host the III WLMLA in Popayán, Colombia, in 2005. 217 

Progress from the III to the VIII WLMLA: 218 

 The WLMLA series continues up to the present.  Table 1 lists the years they took place 219 

and the hosting cities and countries.  In addition, it contains information about the number of 220 

attendees, their geographical distribution, how many were students, and the number and types of 221 

presentations.  The total number of attendees and the ones from LA show an increasing trend 222 

peaking at both the V and VI WLMLA followed by values at the same levels as IV WLMLA and 223 

before.  More relevant is the fact that the percentages of LA attendees has remained above 60% 224 

from the IV WLMLA to the present, showing the predominantly Latin American character of the 225 

meetings and at the same time, the interest of the international scientific community.  Regarding 226 

the number of students, after the 22% achieved at the I WLMLA, the number of attending students 227 

remained over 30%, with an average of 41% for the eight WLMLAs already hosted.  The WLMLA 228 

has clearly achieved one of its main goals, to facilitate education and scientific capacity-building 229 

of students and young scientists related to lidar research in Latin America. 230 

 Table 1 shows that scientists from the rest of the world attended all of the eight WLMLAs 231 

already held, representing an average of 30% of the attendees, contributing to important exchanges 232 

and cooperation discussed in the next section.  Oral presentations and posters show the same trends 233 

as the number of attendees, with an average of 15 posters and 25 oral presentations.  In general, 234 
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we are pleased with this level of participation, taking into account the size of the lidar community 235 

in LA and the number of existing lidars. 236 

 A series of presentations and papers at the ILRCs describe the progress, obstacles and 237 

challenges over the years building up LALINET (Antuña et al., 2002b, 2006, 2008, 2010, 2012b; 238 

Landulfo et al., 2015) http://lalinet.org/index.php/Main/Publications.  In addition, each of the 239 

WLMLA local organizing committees has prepared a report of each meeting 240 

http://lalinet.org/index.php/Aline/Newsletter.  In 2010 Eduardo Landulfo assumed the leadership 241 

and coordination of LALINET upon agreement of the lidar team leaders, as proposed by Juan 242 

Carlos Antuña-Marrero. 243 

 The VII WLMLA, held in Pucón, Concepción, Chile in 2013 signaled the end of a first 244 

cycle of rotation of the workshop hosting throughout all the existing lidar groups.  A new rotation 245 

cycle began with the VIII WLMLA hosted at Cayo Coco, Ciego de Ávila, Cuba in 2015.  From 246 

the time of the first workshop, care was taken to avoid hosting it in the same year as the ILRCs.  247 

However, in 2014 the 27th ILRC was postponed until 2015, the same year the VIII workshop took 248 

place in Cayo Coco, Cuba.  To avoid that situation the IX Workshop was held successfully in 249 

Santos, São Paulo, Brazil, July 11-16, 2016, hosted by the IPEN lidar team.  The X Workshop will 250 

be held in Medellin, Colombia, November 18 to 23, 2018. 251 

 LALINET formalized cooperation with GALION-WMO in 2013.  The goals for LALINET 252 

include the continuation of the process of standardization of the measurements, calibration, and 253 

processing algorithms; maintaining regular workshops, with lidar courses; and increasing 254 

international cooperation both with individual teams and with the network.  The main challenges 255 

have been finding funding for the workshops and for network activities and making the network 256 

and the individual team’s goals compatible. 257 

http://lalinet.org/index.php/Aline/Newsletter
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 258 

The Role of International Cooperation: 259 

 The support by Alan Robock and Pablo Canziani in the funding search, organization, and 260 

execution of the I WLMLA was the first of the many international cooperation contributions that 261 

made possible the buildup of LALINET.  Right at the I WLMLA, international cooperation began.  262 

Under ESA support, promoted by Errico Armandillo, a refurbished lidar from Quanta System was 263 

made available for LALINET.  The lidar team at the University of La Sapienza under the 264 

leadership of the late Giorgio Fiocco tested the instrument.  The instrument was installed at the 265 

Laboratorio de Física de la Atmósfera, Universidad Mayor de San Andrés, La Paz, Bolivia, in 266 

2006 (Forno et al., 2006).  Unfortunately, the lidar had many problems with its electronics due to 267 

the altitude of La Paz, 3420 m.  However, thanks to the enthusiastic support of David Whiteman 268 

at NASA Goddard Space Flight Center (GSFC), a new Nd:YAG laser was installed.  In addition, 269 

several modifications, mainly to the optical and acquisition systems, were performed.  That lidar 270 

system has been working properly in La Paz since 2010. 271 

 After the I WLMLA a proposal for establishing a lidar station at Quito, Ecuador (0º, 78ºW, 272 

2850 m) was submitted to NASA, but it was not funded (Antuña et al., 2002b).  ESA contributed 273 

to support the II Workshop, because of the initiative and enthusiasm of Errico Armandillo, who 274 

engaged himself in promoting LALINET worldwide.  ESA continued providing financial support 275 

to each of the following WLMLAs until the present.  That regular contribution has played an 276 

important role for guaranteeing basic support for the organizing and conducting the WLMLA 277 

series. 278 

 Beginning with the III WLMLA, the attendees have had the possibility of publishing their 279 

presentations as articles in Óptica Pura y Aplicada (OPA), a peer-reviewed journal of the Optical 280 
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Society of Spain (OPA, 2015).  This has been possible thanks to the contribution of the Grupo de 281 

Óptica Atmosférica, University of Valladolid (GOA-UVA), Spain, led by Ángel de Frutos Baraja.  282 

Seventy papers have been already published in OPA between the III and the VII WLMLA (Antuña 283 

et al., 2012b).  Two graduate students from Colombia began their Ph.D. studies at GOA-UVA by 284 

the end of 2005, under the supervision of Ángel de Frutos Baraja.  They were mainly supported 285 

by fellowships from the Alban Program of the European Community.  Both of them successfully 286 

completed their Ph.D.s and one of them, Elena Montilla-Rosero, returned in 2010 to LA.  She 287 

engaged in the setup of a lidar station at the Center for Optics and Photonics (CEFOP), University 288 

of Concepción, Chile, and became the leader of the lidar team until the middle of 2015.  The lidar 289 

has been operative since 2012 (Montilla-Rosero et al., 2012, 2016).  During all the setup process, 290 

the collaboration with existing LALINET stations, such as São Paulo, Buenos Aires, and Medellín, 291 

was crucial. 292 

 In 1998, Differential Absorption Lidar (DIAL) ozone measurements began in Villa 293 

Martelli, Buenos Aires, Argentina, in cooperation with Gerard Megie from CNRS (Pazmiño et al., 294 

1999; 2001).  In 2002, the system was upgraded and installed in a laboratory-container donated by 295 

the CNRS and by 2005 in cooperation with the Japan International Cooperation Agency (JICA), 296 

it was moved to Rio Gallegos in Patagonia (Wolfram et al., 2005).  This system has been part of 297 

NDACC since 2008, and it is being upgraded and prepared to continue operating into the near 298 

future in cooperation with JICA.  A mobile DIAL lidar was set up at Villa Martelli in 2004 299 

(Wolfram et al., 2004a) as well as a Raman water vapor lidar (Wolfram et al., 2004b). 300 

 The eruption of Puyehue-Cordón Caulle volcano in Chile in June 2011 caused the 301 

cancellation of many flights to and from Patagonia.  The Defense Ministry of the Argentinian 302 

Republic instructed CEILAP to develop and install five lidar stations to measure volcanic ash 303 
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around the country.  By February 2015 the instruments were built and installed with funds from 304 

the Defense Ministry Special Project 31'554/11.  They are located from south to north at the 305 

airports of Río Gallegos, Comodoro Rivadavia, Bariloche, Neuquén, and Aeroparque de Buenos 306 

Aires.  The National Meteorological Service operates the lidars (Quel et al., 2015). 307 

 In cooperation with JICA a High Spectral Resolution Lidar, the first in Latin America, 308 

developed at CEILAP, became operative by December 2015 (Quel, 2015).  For more than 20 years 309 

CEILAP has been conducting the lidar project in LA with the highest rate of increase in the number 310 

of lidar instruments, the most advanced technology, and measuring the broadest set of atmospheric 311 

variables with lidar.  Cooperation with France has been very productive, initiated in 1975 by 312 

Eduardo Quel together with Gerard Megie, Sophie Godin, and Pierre Flamant from France.  JICA 313 

has been cooperating with CEILAP from 1998 to the present with periodic international 314 

evaluations.  The program SATREPS (JST/JICA) is currently supporting a five-year project 315 

between Japan, Chile, and Argentina for the development of an atmospheric environmental risk 316 

management system in South America 317 

(http://www.jst.go.jp/global/english/kadai/h2404_argentine.html). 318 

 In 2006 Eduardo Landulfo from the São Paulo lidar station at the Centro de Lasers e 319 

Aplicações, IPEN, Brazil, conducted a working visit to the GSFC and Howard University to learn 320 

about Raman lidar technology with David Whiteman and Demetrius Venable.  It allowed Eduardo 321 

Landulfo to work on Water Vapor Raman Lidar calibration (Venable et al., 2011).  It also allowed 322 

an upgrade of the original system to Raman and buildup of the UV Raman water vapor lidar.  323 

Further improvements of the system were conducted in cooperation with Igor Veselovskii and 324 

Mikhail Korenskii from the Physics Instrumentation Center, Moscow, Russia in 2010.  Cirrus 325 

cloud lidar studies at São Paulo, began in cooperation with Phillip Keckhut from CNRS, France, 326 

http://www.jst.go.jp/global/english/kadai/h2404_argentine.html
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in 2008 (Larroza et al., 2013).  In early 2009, a new transportable commercial unit from Raymetrics 327 

Ltd. was added to the equipment pool and expanded the lidar measurement capabilities in Brazil.  328 

Soon it will be followed by a scanning lidar to be deployed in an industrial area near São Paulo.  329 

The newest system will be a 3-channel polarizing system in Natal, nicknamed DUSTER, to be 330 

assembled at IPEN with a telescope and detection system designed by Igor Veselovskii.  It will 331 

perform measurements of aerosol long-range transport into the eastern part of South America. 332 

 The setup of the lidar station at Medellín, Colombia, was possible thanks to the cooperation 333 

and agreements reached at the workshops and exchanges with LALINET teams and other partners 334 

(Nisperuza and Bastidas, 2011).  A set of loans and donations provided needed resources: a pulsed 335 

Nd:YAG laser donated by Massimo Del Guasta from the Institute of Applied Physics 336 

“NelloCarrara,” Italy; photomultiplier detectors by Eduardo Landulfo, from IPEN, Brazil.  In 337 

addition, a large Newtonian telescope optimized to 1064 nm and various optical and electronic 338 

elements have been donated through the efforts and willingness of David Whiteman from GSFC, 339 

who also supported the initiative and consolidation of a NASA-AERONET sun photometer site in 340 

Colombia.  The Medellín lidar team has also benefited from its participation in major projects 341 

under the leadership of Victoria Cachorro and Ángel M. de Frutos Baraja, GOA-UVA. 342 

 The setup of a lidar station in the Amazon forest started in 2010, when the Laboratory of 343 

Atmospheric Physics of the University of São Paulo, Brazil, bought a commercial Raman lidar 344 

from Raymetrics Ltd.  The advice from the lidar group at the Leibniz Institute for Tropospheric 345 

Research (TROPOS), Leipzig, Germany was important to determine the system best suited for 346 

long-term continuous measurements.  The TROPOS team, led by Albert Ansmann, also 347 

contributed to solving alignment and thermal stability issues after lidar operation started in July 348 

2011.  In addition, Birgit Heese (TROPOS) and Boris Barja (GOAC) contributed to the 349 
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development of the elastic and Raman algorithms in 2012.  Standard quality assurance procedures, 350 

as in most LALINET stations, started to be fully applied only in 2014, with the collaboration of 351 

Juan Luis Guerrero-Rascado, from the University of Granada in Spain (Barbosa et al, 2014a; 352 

Guerrero-Rascado et al., 2016). 353 

 Many other colleagues from all over the world have contributed as professors, members of 354 

award committees of the workshops, and direct advice to the network and/or individual teams.  In 355 

addition, many contributions of spare parts and equipment have already taken place.  No less 356 

important has been the support for attendance at international conferences and meetings, training 357 

and fellowships, including for Ph.D. students, several of whom returned to LA. 358 

 359 

ICLAS and ILRC’s: 360 

 In 2006 at the 23rd ILRC, held in Japan, the International Coordination group on Laser 361 

Atmospheric Studies (ICLAS) elected Juan Carlos Antuña-Marrero as one of its members, 362 

representing LA.  He served a 6-year term, proposing Eduardo Landulfo as ICLAS member at the 363 

end of his term.  Eduardo Landulfo was elected ICLAS member at the 26th ILRC held in Greece, 364 

in 2012.  He was already coordinating LALINET activities.  Having a representative at ICLAS 365 

during all those years granted LALINET connection and exchanges with the broad lidar 366 

community worldwide.  It also allowed publicizing of the activities conducted in LA and searching 367 

for international cooperation. 368 

 369 

GALION: 370 

 In March 2007, the I GALION Workshop took place at the Max Planck Institute in 371 

Hamburg, Germany. Juan Carlos Antuña-Marrero was invited and he joined the WMO Panel 372 
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commissioned for the design and implementation of GALION representing LALINET (Bösenberg 373 

et al., 2008).  At the II GALION Workshop, held at WMO Headquarters in Geneva in September 374 

2010, both Eduardo Landulfo and Juan Carlos Antuña-Marrero attended to facilitate the transition 375 

between the former and new coordinator of LALINET activities.  In early 2013, Eduardo Landulfo 376 

signed a formal agreement for the official contribution of LALINET to GALION 377 

(http://lalinet.org/uploads/Aline/Commitment/Aline_Letter_WMO_GAW.pdf).  The goal of 378 

formalizing LALINET had been reached, but new challenges emerged for it, required to become 379 

a standardized lidar network. 380 

 381 

Current LALINET status and activities: 382 

 Table 2 lists the existing lidar teams and the main technical features of their 10 operating 383 

instruments, also shown on the map in Figure 3.  The ten operational stations are distributed from 384 

46°S to 6°N and 75°W to 46°W.  They are all located in urban/suburban environments except the 385 

one in Manaus, Brazil.  Although Raman lidars are located in seven of the 10 stations, they are 386 

concentrated in Argentina (4) and Brazil (3).  In the rest of the countries, Bolivia, Colombia, and 387 

Chile, the systems are elastic lidars.  It is expected that new stations will be developed in the region 388 

covering a larger area and homogenizing its geographical distribution. 389 

 The status of LALINET is characterized by the coordination and execution of several joint 390 

actions and activities.  The workshops continue as a central mechanism for the coordination of the 391 

general and long-lasting actions, with a LALINET executive meeting and the open discussion 392 

session.  In addition, the workshops continue being an educational tool for capacity building. 393 

 There is an overlap between the Argentinian Lidar station operation – since some of them 394 

are closely related to an operational volcanic alert network in collaboration with the local weather 395 
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service and Air Force – and the LALINET operational tasks, which are more devoted to 396 

academic/scientific goals.  Those stations in the operational network should be included when they 397 

have satisfied the LALINET/WMO protocol in measurements and data quality requirements, but 398 

which due to manpower and schedule follow up have not yet fully joined LALINET. 399 

 Diagnostics and quality control tests of LALINET instrumentation have already been 400 

conducted and will be updated regularly.  Preliminary actions have already taken place for 401 

establishing measurement protocols, data assurance programs, and cross validation and calibration 402 

campaigns to reach a better technical status.  The first joint measurement campaign and 403 

comparison of lidar inversion algorithms has been conducted successfully.  Monitoring of the 404 

Calbuco eruption aerosols was the most recent combined effort in LALINET.  We describe briefly 405 

those actions: 406 

 407 

First LALINET campaign and comparison of lidar inversion algorithms: 408 

 The first LALINET Pilot campaign was conducted September 10-14, 2012, during the 409 

South American biomass-burning season.  Only four of the eight lidars in the LALINET network 410 

that could have participated were able to conduct measurements: Manaus at 355 nm, São Paulo at 411 

355 and 532nm, Buenos Aires at 355, 532 and 1064 nm, and Concepción at 532 nm.  Simultaneous 412 

measurements coordination was a challenge because seven of the eight lidar stations depended on 413 

fair weather and on a local operator for the measurement routine (Barbosa et al., 2014b). 414 

 The campaign was followed by the first comparison of the individual teams’ algorithms 415 

for the elastic retrieval of the aerosol backscatter coefficient.  Raw signal profiles from the four 416 

stations were manually screened.  Then a 1-hour average cloud-free profile was selected from each 417 

station dataset.  The resulting four elastic profiles were processed by members of each lidar group 418 
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using their own elastic lidar algorithm.  Figure 4 shows the results achieved at 2nd and 4th 419 

comparison stages for the four cloud-free profiles produced by the algorithm of each one of the 420 

four participating teams.  The improvement reached at stage 4 is illustrated by the good agreement 421 

between the derived backscatter profiles.  Only in the case of the Buenos Aires profile was a fifth 422 

stage necessary.  This effort was the first step in the standardization of the measurements, 423 

calibration, and processing algorithm.  It also demonstrated that coordination is one of the main 424 

challenges of this type of activity (Barbosa et al., 2014b).  Results were encouraging although 425 

many difficulties remained to be solved.  Thus, it was decided that a new series of workshops was 426 

necessary, but this time focused on developing a common set of data analysis algorithms.  The I 427 

Workshop on Lidar Inversion Algorithms of LALINET took place in March 10-14, 2014 at 428 

CEFOP, University of Concepción, Chile, who financially supported it.  Its goal was to compare 429 

the inversion algorithms for elastic backscatter lidars from the different LALINET teams in order 430 

to develop a uniform unified and improved algorithm.  This time, simulated lidar datasets, provided 431 

by EARLINET colleagues (Böckmann et al., 2004), were used instead of measurements for the 432 

algorithm evaluation.  Several bugs in the algorithms were fixed and important progress was 433 

achieved during the four-day meeting (LALINET, 2014).  Lack of funding for LALINET as a 434 

network is limiting how often we can hold these algorithm-development workshops, but a second 435 

is planned for 2017. 436 

 437 

Diagnostics and quality control tests of LALINET instrumentation: 438 

 The first step for the standardization of LALINET instruments was conducting an 439 

instrument inventory.  It consisted of compiling a wide set of technical specifications (covering 440 

station information, mode of operation, and emitter/receiver features, among others).  This arduous 441 
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task highlighted the instrumental strengths and weaknesses of LALINET.  In particular, it was 442 

demonstrated that current LALINET measurements are not appropriate for research on aerosol 443 

microphysical properties due to the reduced number of wavelengths available in the network.  In 444 

addition, some physical and optical aerosol properties cannot be distinguished in LALINET 445 

measurements in spite of being relevant in strategic areas where the impact of long-range transport 446 

of Saharan dust or volcanic aerosols is possible.  Nevertheless, the capabilities for water vapor 447 

profiling allow studies to be conducted on one of the important climate issues: aerosol hygroscopic 448 

growth.  In addition, most of the LALINET lidars are not serially-produced systems and, 449 

consequently, a strict quality assurance is required (Guerrero-Rascado et al., 2016).   450 

An inter-comparison of all LALINET systems, performing co-located and simultaneous 451 

measurements, is not possible because of current funding limitations and logistical problems.  452 

However, instrumental harmonization has been done since 2014 by adapting the instrumental 453 

quality assurance protocols routinely applied in EARLINET (Freudenthaler et al., 2016; 454 

Wandinger et al., 2016).  The aim of such tests is to detect potential anomalies in the performance 455 

of the individual lidar systems.  Quality control procedures applied by EARLINET including 456 

fundamentals, examples and file format were adapted and distributed among LALINET stations.  457 

Tests were implemented to characterize the performance in the near range (quadrants and in-out 458 

telecover tests), in the far range (Rayleigh fit test), the electronic noise (dark current test), and the 459 

synchronization between the pulse-firing mechanism and the recording system (zero-bin and bin-460 

shift tests).  In 2014, all these tests were requested to be conducted at each LALINET station and 461 

to be submitted by the middle 2014.  After evaluation, an individual report for each station was 462 

submitted to the station principal investigator.  It included evaluation of the tests, assessment, and 463 

suggestions to improve the instrumental performance in case it was needed.  Six of the nine 464 
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LALINET systems had already carried out the instrumental quality assurance tests by the end of 465 

2014. 466 

Deficiencies in some stations were mainly related to optical misalignment or deficient 467 

optical design, resulting in an inappropriate performance in the near and/or far range.  By means 468 

of these tests, it was possible to identify the LALINET stations with high-level performance and 469 

the deficiencies to be overcome in some stations for getting a robust, trustable lidar network in the 470 

future.  It was agreed that the quality assurance protocols would be applied once per year or more 471 

frequently if instrumental upgrades are performed.  In 2015, similar results were obtained for all 472 

stations and these protocols started to be applied on the new lidar system DUSTER (still under 473 

implementation) in Natal, Brazil. 474 

Examples of the quality assurance tests conducted are depicted in Figures 5 and 6.  Figure 475 

5 shows the quadrant telecover test for the channel 355 analog mode for the system MAO (Manaus, 476 

Brazil) on June 9, 2015.  The telecover test is used to compare several lidar signals collected using 477 

different parts of the telescope.  In particular, the procedure for the quadrant telecover test consists 478 

in dividing the telescope aperture in four quadrants, defined (clockwise) as North (in reference to 479 

the laser beam), East, South and West.  Measurements are taken covering three quadrants by a 480 

dark sheet and only the remaining quadrant collects the backscattered signal coming from the 481 

atmosphere.  The instrumental conclusions extracted from data shown in Figure 5 are trustable due 482 

to the negligible atmospheric variability (from the comparison of sectors North and North2) during 483 

the measurement sequence.  The comparison among these signals allows assessing the 484 

performance of a lidar system in the near range.  Signals shown in Figure 5 reveal that the altitude 485 

for the maximum normalized lidar range corrected signal (RCS) in the near range was achieved 486 

following the expected sequence (North ≈ North2 < East = West < South), indicating good lidar 487 
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alignment in the near range.  In addition, no differences among quadrants were found above ~1 488 

km.  489 

In Figure 6 the Rayleigh fit on September 17, 2015 is shown for the channel 532 photon 490 

counting mode of the system MAO installed at Manaus (Brazil).  The Rayleigh or molecular fit is 491 

a tool that is able to characterize the quality alignment of a lidar system in the far range.  To this 492 

aim, the RCS is compared to the expected molecular range corrected signal (
att

mol ).  
att

mol  takes into 493 

account the molecular backscatter coefficient, the correction with square distance and the 494 

attenuation due to atmospheric transmittance.  Only photon counting signals are used for this test 495 

because they allow us to investigate the far height range.  Figure 6 shows a good agreement 496 

between the molecular attenuated backscatter signal and the normalized atmospheric backscatter 497 

with a similar trend above 6 km up to more than ~18 km.  Peaks observed between 12 and 15 km 498 

correspond to several cirrus cloud layers.  For this case, this height range 6-12 km can be used as 499 

reference altitude for Klett-Fernald and Raman inversion methods.  Examples of zero-bin, bin-500 

shift and dark current tests can be seen in Guerrero-Rascado et al. (2014) for a non LALINET lidar 501 

system installed in Cubatão (Brazil). 502 

Monitoring Calbuco eruption aerosols: 503 

 On April 22, 2015, the Calbuco volcano in Chile (41.33°S, 72.62°W) erupted after 43 years 504 

of inactivity, followed by a great amount of aerosol and gas injection into the atmosphere.  505 

Pyroclastic material dispersed into the atmosphere, posed a threat to aviation traffic and air quality 506 

over a large area, from its location to the Patagonian and Pampa regions, reaching the Atlantic and 507 

Pacific Oceans and neighboring countries, Argentina, Brazil, Paraguay and Uruguay, transported 508 

by the westerly winds at these latitudes.  The presence of volcanic aerosol layers could be identified 509 

easily near Calbuco and thereafter by satellite remote sensors and ground-based lidars in the path 510 
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of the dispersed aerosols.  CALIPSO and MODIS were the space platforms used to track these 511 

layers and lidars from the LALINET network, as well as independent stations in South America, 512 

gave us the possibility to get a 4-D distribution of Calbuco aerosols during the eruption event and 513 

the following days after its occurrence (April 22-30).  Most of the lidar stations had collocated 514 

AERONET sun photometers to help in the optical characterization and not all LALINET stations 515 

were able to observe this event given the air circulation pattern dominating this part of the globe 516 

and their distance from the location of atmospheric injection.  A special web page has been setup 517 

at the LALINET web site containing information of our measurements 518 

http://lalinet.org/index.php/Campaign/CalbucoVolcano2015. 519 

Lidar quick looks in the cited web site show no signal of Calbuco at the La Paz and 520 

Medellin lidar stations.  From the rest of the lidar quick looks it could be seen that the aerosols 521 

from Calbuco eruption were registered at the lidar stations located at Aeroparque (Buenos Aires), 522 

Comodoro Rivadavia, Bariloche, Neuquén and Rio Gallegos, all five in Argentina.  In addition, 523 

the lidars at Concepcion, Chile and Sao Paulo, Brazil also measured the aerosols from the Calbuco 524 

eruption.  Here we illustrate the Calbuco lidar measurements conducted at three of those LALINET 525 

network sites, selected according to their location with respect to Calbuco volcano: CEFOP, 526 

University of Concepción, Chile lidar located west of the Calbuco, the nearest station to the 527 

volcano, Aeroparque, Buenos Aires, Argentina, lidar located east of Calbuco and São Paulo, 528 

Brazil, the northernmost LALINET station that measured Calbuco aerosols.  Preliminary results 529 

from those stations follow. 530 

 The quick look of the lidar range corrected signal at 532 nm from CEFOP, University of 531 

Concepción, Chile, for the afternoon of April 23 is shown in Figure 7.  The tropospheric aerosols 532 

from Calbuco can be seen, ranging between 5 and 9 km.  They were observed for the first time 533 

http://lalinet.org/index.php/Campaign/CalbucoVolcano2015
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around 12:45 LT and lasted until at least 21:00 LT, showing a decrease of its vertical extension, 534 

initially between 5 and 9 km to around half a km around 7 km of altitude by 21:00 LT.  When the 535 

aerosols were registered for the first time, they showed a multilayer structure between 5 and 9 km 536 

of altitude.  The multilayer structure was present from 14:30-19:00 LT; then the original, clearly 537 

defined layers, apparently merged completely.  Nevertheless, from that time up to around 19 LT, 538 

a layered structure of the aerosols range corrected signal is evident.  After near 19:30 LT the layer 539 

notably decreased its intensity and narrowed. 540 

Lidar range corrected signal in Figure 7 was averaged and subsequently integrated 541 

considering a lidar ratio of 55 (Ansmann et al., 2010; 2011;  Grofl et al., 2012) to generate Figure 542 

8.  In Figure 8 the resulting profile of the extinction coefficient is shown.  The aerosol extinction 543 

coefficient maximum appears in a narrow double layer around 8 km of altitude. 544 

The daily mean AOD at 500 nm measured by an AERONET sun photometer, located at 545 

the Concepcion University, is shown in Figure 9.  The daily mean AOD at 500 nm has a value of 546 

0.26 for April 23.  The AOD at 532 nm calculated from the same day integrated profile of aerosols 547 

extinction coefficients, both in time and altitude, has a value of 0.28, showing a very good 548 

agreement with the AOD at 500 nm measured by the sun-photometer. 549 

Figure 10 shows the quick look of the lidar measurements conducted at Aeroparque, 550 

Buenos Aires, Argentina (34.559 °S, 58.417 °W).  From 21 LT to 24 LT of April 24 at altitudes 551 

ranging between 5 and 7 km the first signals of the aerosol layers are evident, showing a sinking 552 

tendency.  Around 1:00 LT three narrow layers of tropospheric aerosols are detected by first time 553 

below 6 km and above around 4.5 km of altitude, that merged by 3:00 LT.  From 1:00 LT to around 554 

7:00 LT the aerosol layer continues to sink down to above the 3 km of altitude.  In addition, the 555 

vertical size of the layer increases with top above 5 km and base below 4 km between 5:00 LT and 556 
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8:00 LT.  For the next 13 hours, up to 21:00 LT the aerosol layer remains around 4 km with a slow 557 

tendency of its thickness to decrease.  Although the Aeroparque lidar, to the east of the Calbuco, 558 

measured a tropospheric aerosol layer like the one measured by the CEFOP lidar, to the west of 559 

the volcano, the altitude, vertical structure and time variability are different.  Only the multilayer 560 

structure is present in both aerosol layers when they were detected by first time at both lidar sites.  561 

Further studies are required to understand this behavior and explain the individual mechanisms of 562 

formation and transport of each one of these volcanic tropospheric aerosol layers.  The quick look 563 

also shows the nocturnal to diurnal transition and evolution of the boundary layer, reaching up to 564 

around 2 km of altitude during the day. 565 

The aerosol extinction profiles were calculated integrating the lidar range corrected signal 566 

every 15 minutes, then using the Fernald backwards equation in the intermediate region.  A lidar 567 

ratio of 55 sr-1 was selected to convert the lidar backscattering to lidar extinction, like in the case 568 

of the CEFOP lidar described above (Ansmann et al., 2010; 2011; Grofl et al., 2012).  The 569 

integration of the lidar aerosol extinction to calculate the AOD was only applied to the tropospheric 570 

aerosol layer, excluding the aerosols present in the boundary layer.  We used AERONET AOD 571 

sun photometer observations conducted at CEILAP (34.6°S, 58.5°W), around 8 km from 572 

Aeroparque, quality control level 2.0 after verifying that the AERONET cloud-screening algorithm 573 

did not discard any of the level 1.5 data for April 25 at Buenos Aires.  Sun photometer AOD at 574 

532 nm was derived from the AOD at 500 nm and the Ångstrom exponent derived from the AOD 575 

at the wavelengths of 500 and 675 nm.  Then sun photometer AOD values at 532 nm every 15 576 

minutes were derived by interpolation to match the lidar wavelength.  AOD from the lidar and the 577 

sun photometer appears in Figure 11.  There is a very good match between Calbuco AOD derived 578 

from lidar measurements and the total AOD measured by the AERONET sun photometer.  The 579 
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differences between the lidar AOD and the sun photometer AOD (δAOD) are also plotted, ranging 580 

± 0.05.  The mean value of δAOD is on the order of 10-4, approximately two orders of magnitudes 581 

below the magnitudes of the minimum errors of the sun photometer and the lidar AOD.  Positive 582 

values of δAOD could be caused by boundary layer aerosols, not accounted for in the lidar AOD 583 

calculations. 584 

 Figure 12 shows the lidar measurements conducted at São Paulo University (SPU) on the 585 

afternoon of April 27, 2015.  The signal produced by the Calbuco volcano aerosols is located 586 

around 19 km, well into the stratosphere.  Differently from the lidar quick looks at CEFOP on 587 

April 23 and at Buenos Aires on April 25, the aerosol layer from Calbuco, measured at SPU on 588 

April 27 was in the stratosphere and remain almost unchanged in altitude and structure for the 589 

whole period it was observed.  The meteorological sounding conducted at the Campo Marte 590 

weather service station (WMO code SBMT) at 00 UTC shows the tropopause located around 16 591 

km, confirming the volcanic aerosol layer is located completely in the stratosphere. 592 

Lidar extinction profiles retrieved at SPU at 532 nm are compared with space and time 593 

coincident aerosols extinction profiles measured by the Ozone Mapper and Profiler Suite, Limb 594 

Profiler (OMPS/LP) instrument.  Ångstrom exponents (αA) were used to calculate extinction 595 

coefficients at 532 nm from the OMPS/LS extinctions coefficients at 674 nm.  In one calculation, 596 

αA is kept constant in altitude with a value of 2.31, derived from OMPS/LS simulations (Taha et 597 

al., 2011).  Another option is to use αA from the 1991 Mt. Pinatubo volcanic eruption, calculated 598 

from the size distributions of the stratospheric sulfuric acid aerosol derived from balloon borne 599 

particle counter measurements.  Four height intervals from the tropopause to 30 km were defined 600 

for αA with a time resolution of four months from 1991 to 1999 in the spectral range 355 nm to 601 
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1064 nm (Jäger and Deshler, 2002).  We selected αA values corresponding to the first four months 602 

after the Mt. Pinatubo eruption. 603 

 In Figure 13 the OMPS/LP aerosol extinction profiles for 532 nm derived from the aerosol 604 

extinction profile at 674 nm are shown with 1 km vertical resolution, derived using both constant-605 

in-altitude αA and the post-Pinatubo-vertical-layer-defined αA.  The OMPS/LP measurement was 606 

conducted at 26°S and 37°W on April 27, 2015 at 16:26:03 UTC, 1019 km from the lidar located 607 

at SPU (23.56°S, 46.74°W).  The aerosol extinction profile retrieved by the lidar, with a 7.5 m 608 

vertical resolution, at this site on April 27 is shown in Figure 13.  The lidar ratio of 64 sr used to 609 

retrieve the extinction profile was obtained by the applying the two-way transmittance method for 610 

the volcanic layer (Platt, 1973; Chen et al., 2002).  According to a NASA OMI + GEOS-5 model 611 

simulation, the OMPS/LP measurement took place in the thick part of the stratospheric aerosol 612 

layer, while a thin part of the stratospheric aerosol layer was located over the SPU lidar (Krotkov, 613 

2016).  This explains the differences in the aerosol extinction profiles, wider in the case of the 614 

OMPS/LP measurements and narrow in the lidar aerosol extinction profile at SPU.  However, the 615 

aerosol extinction profiles from OMPS/LP and the SPU lidar show coincidence in the magnitude 616 

of the maxima of the aerosol extinction profiles and their vertical location.  Further analyses are 617 

being conducted by LALINET teams. 618 

Summary: 619 

 In this paper, we describe the origin of LALINET, which began as a series of technical 620 

meetings and evolved into a coordination of lidar stations together with ancillary instrumentation.  621 

The entire process took about 15 years and had many contributions and collaborations from 622 

scientists and institutions throughout the globe.  The recognition of the network by WMO and 623 

GALION was a landmark and started a new era for the network.  There are no antecedents of an 624 
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atmospheric observational regional network built in Latin America by the agreement of Latin 625 

American scientists.  However, there are many potential future opportunities and scientific goals 626 

to grant new insights into the state of the climate in the Caribbean, Central and South America, 627 

which will demand much coordination and the need to search for fostering mechanisms to achieve 628 

these goals.  LALINET serves as an example of creating a new young community in the field and 629 

keeping it intact.  But maintaining it will require continuing effort to maintain excellence in our 630 

activities, sustain the progress reported above, and ensure its continuity into the future.  631 
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Table 1: History of the Workshop on Lidar Measurements in Latin America (WLMLA).  Total 896 

attendees includes those from Latin America (LA) and those from the Rest of the World (RW).  897 

Students (ST) are also listed.  For the three categories of attendees, the percent with respect to the 898 

total number of attendees appears in parenthesis.  Also the number of presentations (Papers) by 899 

categories are listed as Posters (PO) and Oral presentations (OR, includes lectures).  900 

 901 

WLMLA 

(Year) 

Location 
Attendees Papers 

LA RW Total ST PO OR 

I  (2001) Camagüey, Cuba 9 (39%) 14 (61%) 23 5 (22%) 5 14 

II  (2003) Camagüey, Cuba 13 (52%) 12 (48%) 25 13 (52%) 2 25 

III  (2005) Popayán, Colombia 41 (79%) 11 (21%) 52 26 (50%) 6 25 

IV  (2007) Ilhabela, Brazil 30 (71%) 12 (29%) 42 20 (48%) 16 29 

V  (2009) Buenos Aires, Argentina 42 (65%) 23 (35%) 65 21 (32%) 31 31 

VI  (2011) La Paz, Bolivia 52 (81%) 12 (19%) 64 32 (50%) 15 21 

VII  (2013) Pucón, Chile 35 (76%) 11 (24%) 46 19 (41%) 20 24 

VIII  (2015) Cayo-Coco, Cuba 29 (71%) 12 (29%) 41 15 (37%) 25 19 

IX  (2016) Santos, São Paulo, Brazil 52 (90%) 6 (6%) 58 22 (40%) 25 23 
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Table 2: Existing LALINET lidar teams and the main technical features of their operating 904 

instruments. 905 

 906 

City, Country 
Lat, Long 

Elevation 
Lidar system 

Start 

year 

Environment 

type 

Medellín, Colombia 
6.26ºN, 75.58ºW 

1538 m 
Elastic, 1064 & 532 nm 2012 urban 

Manaus, Brazil 
2.89ºS, 59.97ºW 

100 m 
UV Raman, 355, 387, 408 nm 2011 

forest, some land 

use around 

La Paz, Bolivia 
16.54ºS, 68.07ºW 

3420 m 
Elastic, 532nm 2010 urban 

São Paulo, Brazil 
23.56ºS, 46.74ºW 

740 m 

Raman; emits 355 & 532; detects 355, 

387, 408, 532, 607 & 660 nm 
2001 urban 

São Paulo, Brazil 
23.56ºS, 46.74ºW 

740 m 

UV Raman; emits 532; detects 532 & 

607 nm 
2009 urban 

Buenos Aires, 

Argentina 

34.56ºS, 58.51ºW 

20 m 
Raman; emits 1064, 532, 355; detects 

1064, 607, 532, 408, 387, 355 nm 
2012 suburban 

Concepción, Chile 
36.84ºS, 73.02ºW 

170 m 
Elastic, 532nm 2012 urban 

Neuquén, Argentina 
38.95ºS, 68.14ºW 

271 m 

Raman; emits 1064, 532, 355; detects  

1064, 607, 532 ∥, 532 ⊥, 408 nm 
2013 urban/suburban 

Bariloche, Argentina 
41.15ºS, 71.16ºW 

840 m 

Raman; emits 1064, 532, 355; detects 

1064, 607, 532, 408, 387, 355 nm 
2012 urban/suburban 

Comodoro Rivadavia, 

Argentina 

45.79ºS, 67.46ºW 

49 m 

Raman; emits 1064, 532, 355; detects 

1064, 607, 532 ∥, 532 ⊥, 408 nm 
2012 urban/suburban 

 907 

  908 



43 

Figure Captions: 909 

 910 

Figure 1:  Mark 1 Lidar, University of West Indies, Kingston, Jamaica.  Photo taken between 1965 911 

and 1966. (Photo by Barclay Clemesha.) 912 

 913 

Figure 2: Group photo from the 1st Workshop on Lidar Measurements in Latin America, held at 914 

Camagüey, Cuba, March 6-8, 2001.  In front seated, from left to right: Alan Robock, Barclay 915 

Clemesha, Dale Simonich, Reynaldo Victoria, and Errico Armandillo.  Back row, standing, from 916 

left to right: Juan Carlos Antuña-Marrero, René Estevan, Boris Barja, Arturo Peña, Roberto 917 

Naranjo, Roger Rivero Vega, Elian Wolfram, Orlando Rodriguez, Roberto Aroche, Eduardo 918 

Palenque, Ruben Delgado, Craig Tepley, Patricia Mothes, Shikha Raizada and Minard Hall.  919 

(Photo by Alan Robock.) 920 

 921 

Figure 3: Geographical distribution of the LALINET lidar stations listed in Table 2. 922 

 923 

Figure 4: Particle backscatter coefficients (Mm-1 sr-1) obtained by each participating group at the 924 

2nd and 4th processing stages on top and bottom respectively.  From left to right, results from São 925 

Paulo, Concepción, Manaus, and Buenos Aires datasets.  Groups 1-4 represent the four lidar 926 

algorithms (one from each lidar team) that were intercompared. 927 

 928 

Figure 5. Example of quadrant telecover test of the channel 355 analog mode for system MAO 929 

(Manaus, Brazil) on June 9, 2015. Colors refer to the different quadrants: North (N, black), East 930 
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(E, red), South (S, green), West (W, blue) and North 2 (N2, magenta).  Curves represent the lidar 931 

range corrected signals normalized at the height-range 4-5 km. 932 

 933 

Figure 6. Example of Rayleigh fit for the channel 532 photon counting mode for system SPU (São 934 

Paulo, Brazil) on September 17, 2015.  Molecular signal (in red) represents the theoretical behavior 935 

expected under clean conditions (no aerosol particles or clouds).  The measured lidar signals, 936 

normalized at the height-range 10-12 km is shown in black. 937 

 938 

Figure 7: Quick look of the lidar range corrected signal at 532 nm measured at CEFOP, University 939 

of Concepción, Chile, the afternoon of April 23, 2015.  The signal between 5 and 9 km shows 940 

tropospheric aerosols from the Calbuco volcanic eruption. 941 

 942 

Figure 8: Profile of the extinction coefficient at 532 nm at CEFOP, University of Concepción, 943 

Chile, for the afternoon of April 23, 2015.  The lidar range corrected signal has been integrated for 944 

the entire time period shown in Figure 7.  Vertical resolution is 7.5 m. 945 

 946 

Figure 9: Daily mean AOD at 500 nm measured by an AERONET sun photometer at CEFOP, 947 

University of Concepción, Chile, for the entire month of April 2015.  The quality level of 948 

AERONET is 1.5.  April 23rd is denoted by the vertical blue dashed line. 949 

 950 

Figure 10: Quick look of the lidar range corrected signal at 532 nm measured at Buenos Aires, 951 

Argentina (34.559 °S, 58.417 °W), on April 25, 2015.  The signal between 4 and 6 km shows 952 
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tropospheric aerosols from the Calbuco volcanic eruption.  Vertical resolution is 45 m and 953 

temporal resolution 1 minute. 954 

 955 

Figure 11: Fifteen minute mean AOD from the lidar measurements at 532 nm (blue stars) and 956 

fifteen minute mean AOD at 532 nm from the sun photometer (black circles).  δAOD values 957 

represent the difference between the sunphotometer AOD and lidar AOD (magenta diamonds). 958 

Measurements from both instruments at Buenos Aires, Argentina, on April 25, 2015. 959 

 960 

Figure 12: Lidar range corrected signal at 532 nm measured at SPU (São Paulo, Brazil) the 961 

afternoon of April 27, 2015.  The signal around 19 km is aerosols from the Calbuco volcanic 962 

eruption. 963 

 964 

Figure 13: Lidar aerosols extinction profile at 532 nm (green) retrieved by the SPU (São Paulo, 965 

Brazil).  OMPS/LP aerosols extinction profiles at 532 nm derived from OMPS/LP aerosols 966 

extinction profiles at 674 nm, using two sets of Ångstrom exponents, indicated here as e.  967 
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 968 

 969 

Figure 1:  Mark 1 Lidar, University of West Indies, Kingston, Jamaica.  Photo taken between 1965 970 

and 1966. (Photo by Barclay Clemesha.) 971 
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 973 

 974 

Figure 2: Group photo from the 1st Workshop on Lidar Measurements in Latin America, held at 975 

Camagüey, Cuba, March 6-8, 2001.  In front seated, from left to right: Alan Robock, Barclay 976 

Clemesha, Dale Simonich, Reynaldo Victoria, and Errico Armandillo.  Back row, standing, from 977 

left to right: Juan Carlos Antuña-Marrero, René Estevan, Boris Barja, Arturo Peña, Roberto 978 

Naranjo, Roger Rivero Vega, Elian Wolfram, Orlando Rodriguez, Roberto Aroche, Eduardo 979 

Palenque, Ruben Delgado, Craig Tepley, Patricia Mothes, Shikha Raizada and Minard Hall.  980 

(Photo by Alan Robock.) 981 
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 983 

Figure 3: Geographical distribution of the LALINET lidar stations listed in Table 2.  984 
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 985 

 986 

 987 

Figure 4: Particle backscatter coefficients (Mm-1 sr-1) obtained by each participating group at the 988 

2nd and 4th processing stages on top and bottom respectively.  From left to right, results from São 989 

Paulo, Concepción, Manaus, and Buenos Aires datasets.  Groups 1-4 represent the four lidar 990 

algorithms (one from each lidar team) that were intercompared. 991 

 992 
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 994 

 995 

Figure 5. Example of quadrant telecover test of the channel 355 analog mode for system MAO 996 

(Manaus, Brazil) on June 9, 2015.  Colors refer to the different quadrants: North (N, black), East 997 

(E, red), South (S, green), West (W, blue) and North 2 (N2, magenta).  Curves represent the lidar 998 

range corrected signals normalized at the height-range 4-5 km. 999 
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 1001 

 1002 

Figure 6. Example of Rayleigh fit for the channel 532 photon counting mode for system SPU (São 1003 

Paulo, Brazil) on September 17, 2015.  Molecular signal (in red) represents the theoretical behavior 1004 

expected under clean conditions (no aerosol particles or clouds).  The measured lidar signal, 1005 

normalized at the height-range 10-12 km, is shown in black. 1006 
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 1008 

Figure 7: Quick look of the lidar range corrected signal at 532 nm measured at CEFOP, University 1009 

of Concepción, Chile, the afternoon of April 23, 2015.  The signal between 5 and 9 km shows 1010 

tropospheric aerosols from the Calbuco volcanic eruption. 1011 

  1012 



53 

 1013 

Figure 8: Profile of the extinction coefficient at 532 nm at CEFOP, University of Concepción, 1014 

Chile, for the afternoon of April 23, 2015.  The lidar range corrected signal has been integrated for 1015 

the entire time period shown in Figure 7.  Vertical resolution is 7.5 m. 1016 
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 1018 

Figure 9: Daily mean AOD at 500 nm measured by an AERONET sun photometer at CEFOP, 1019 

University of Concepción, Chile, for the entire month of April 2015.  The quality level of 1020 

AERONET is 1.5.  April 23rd is denoted by the vertical blue dashed line. 1021 
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 1023 

Figure 10: Quick look of the lidar range corrected signal at 532 nm measured at Buenos Aires, 1024 

Argentina (34.559 °S, 58.417 °W), on April 25, 2015.  The signal between 4 and 6 km shows 1025 

tropospheric aerosols from the Calbuco volcanic eruption.  Vertical resolution is 45 m and 1026 

temporal resolution 1 minute. 1027 
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 1029 

Figure 11: Fifteen minute mean AOD from the lidar measurements at 532 nm (blue stars) and 1030 

fifteen minute mean AOD at 532 nm from the sun photometer (black circles).  δAOD values 1031 

represent the difference between the sunphotometer AOD and lidar AOD (magenta diamonds). 1032 

Measurements from both instruments at Buenos Aires, Argentina, on April 25, 2015. 1033 
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 1035 

 1036 

Figure 12: Lidar range corrected signal at 532 nm measured at SPU (São Paulo, Brazil) the 1037 

afternoon of April 27, 2015.  The signal around 19 km is aerosols from the Calbuco volcanic 1038 

eruption. 1039 
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 1041 

 1042 

Figure 13: Lidar aerosols extinction profile at 532 nm (green) retrieved by the SPU (São Paulo, 1043 

Brazil).  OMPS/LP aerosols extinction profiles at 532 nm derived from OMPS/LP aerosols 1044 

extinction profiles at 674 nm, using two sets of Ångstrom exponents, indicated here as αA. 1045 




