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ABSTRACT

Deep atmospheric convection, which covers a large range of spatial scales

during its evolution, continues to be a challenge for models to replicate,

particularly over land in the Tropics. Specifically, the shallow-to-deep con-

vective transition and organization on the mesoscale are often not properly

represented in coarse resolution models. High resolution models offer in-

sights on physical mechanisms responsible for the shallow-to-deep transition.

Model verification, however, at both coarse and high resolution requires val-

idation and, hence, observational metrics which are lacking in the Tropics.

We provide here a straightforward metric derived from the Amazon Dense

GNSS Meteorological Network (∼100km x 100km) based on a spatial cor-

relation decay timescale during convective evolution on the mesoscale. For

the shallow-to-deep transition, the correlation decay timescale is shown to be

around 3.5 hours. This novel result provides a much needed metric from the

deep tropics for numerical models to replicate.
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1. Introduction29

Deep precipitating convection dominates tropical meteorology and climate. Given the spatial30

and temporal scales over which convection evolves and complex interactions with dynamic and31

thermodynamic fields, it is a challenging phenomenon to reproduce in numerical models of all32

resolutions. Coarse resolution models, where convection is parameterized, have had difficul-33

ties replicating the continental diurnal convective cycle as well as convective organization on the34

mesoscale (Bechtold et al. 2004; Grabowski et al. 2006; Folkins et al. 2014). Oftentimes, high-35

resolution models have been utilized with the goal of ameliorating the continental (Tropics or Mid-36

Latitudes) diurnal cycle or convective organization deficiencies through improvements in model37

parameterizations (Rio et al. 2009; Rieck et al. 2014). However, high resolution modeling studies38

(cloud-resolving models (CRM) to large-eddy simulation (LES)) have also been employed to infer39

the actual physical mechanisms responsible for convective development/organization (e.g., cold40

pools). The shallow-to-deep convective transition (s-t-d transition, for brevity), which coarser res-41

olution models often fail to replicate, has received special attention. For example, modeling studies42

have indicated that cold pool formation (Kuang and Bretherton 2006; Khairoutdinov and Randall43

2006; Schlemmer and Hohenegger 2016), increasing cloud buoyancy (Wu et al. 2009), cumulus44

congestus moistening (Waite and Khouider 2010) or large-scale vertical motions (Hohenegger and45

Stevens 2013) control the s-t-d transition. Nevertheless, these mechanistic deductions from high46

resolution models also require validation with high spatial-temporal resolution observations.47

Ascertaining the physical realism of models with domain sizes on the order of 100km x 100km48

requires corresponding mesoscale observations, which are typically lacking in the continental49

Tropics. The Amazon Dense GNSS Meteorological Network (ADGMN) (Adams et al. 2015)50

was created precisely to investigate mesoscale water vapor-convection interactions, specifically, to51
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examine the s-t-d transition and to test for responsible mechanisms. The ADGMN’s high tempo-52

ral and spatial meteorological data lend themselves to metric creation to validate models, which53

motivates this present study.54

Although cloud top temperature (CTT) from satellite platforms can be used to evaluate cloud55

evolution (e.g., (Hohenegger and Stevens 2013)), metrics based on GNSS (Global Navigational56

Satellite Systems)/GPS (Global Positioning System) precipitable water vapor (PWV) are advan-57

tageous for several reasons. Firstly, GNSS PWV frequency (≈5 minutes) provides sufficient tem-58

poral resolution for rapidly developing cumulus fields. Moreover, GNSS PWV is all-weather59

accurate, including cloudy and rainy conditions associated with deep convection. Furthermore,60

PWV has a strong relationship with tropical convective precipitation and has served as the criti-61

cal variable in numerous studies relating tropical convection to thermodynamics (Raymond 2000;62

Bretherton et al. 2004; Lintner et al. 2011; Hottovy and Stechmann 2015; Schiro et al. 2016).63

Finally, in models, PWV is a trivial variable to calculate unlike variables derived from cloud mi-64

crophysical parameterizations.65

Since mesoscale observationally based metrics are in short supply in the Tropics, we propose a66

novel metric based on spatial cross correlations for gauging the mesoscale spatio-temporal evo-67

lution of Amazonian convection. Similar to Adams et al. (2013), who used 3.5 years of GPS68

PWV from the Instituto Nacional de Pesquisas da Amazônia (INPA) (see Figure 1) to derive a69

“water vapor convergence” timescale, we also focus on the s-t-d transition. Adams et al. (2013)70

inferred, based on the observed joint evolution of cloud fields and PWV, a characteristic s-t-d tran-71

sition timescale of ∼4 hours. Here, the temporal evolution of spatial correlation of PWV fields is72

described with an exponential function, providing a spatial correlation decay timescale; a useful73

diagnostic for models. In what follows, we describe the ADGMN, bring to light some ambiguities74

associated with the definition of the s-t-d transition, and present the methodology for analyzing75
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spatial correlation decay timescales. Results focused on the seasonal and, particularly, the di-76

urnal cycle are presented. Remarks on future studies with ADGMN data and expanding GNSS77

meteorological networks in the Tropics conclude the paper.78

2. Context and motivation, study site, data and methodology79

a. Context and motivation80

In its most generic form, the s-t-d transition can be idealized as the process of shallow cumulus,81

growing into cumulus congestus, perhaps with showers, and finally morphing into deep precipi-82

tating convective towers on typical timescales of 2 to 4 hours (Wu et al. 2009; Hohenegger and83

Stevens 2013; Adams et al. 2013). However, perusal of the literature reveals rather varied, and84

somewhat ambiguous, usage of the s-t-d transition concept, potentially leading to confusion. To85

contextualize the present study and clarify the intended usage of our derived metric, we divide86

s-t-d transition studies into three categories. These categories are neither exhaustive nor neces-87

sarily mutally exclusive, though certainly nearly all studies could fit comfortably within one. The88

first category, under which our study falls, follows Zehnder et al. (2006), Zhang and Klein (2010)89

and Adams et al. (2013), all observationally based studies of continental convection. Here, a90

fixed geographical area (<50km) is observed instrumentally, an Eulerian and decidedly mesoscale91

perspective, as “individual” convective events develop over it. The temporal evolution of these92

convective events are typically composited to derive transition timescales (Adams et al. 2013) or93

evaluate thermodynamic or environmental conditions during the transition (Zehnder et al. 2006;94

Zhang and Klein 2010). A second category, for which our metric is intended, involves high res-95

olution models. These CRM and LES modeling studies (∼100km x 100km) probe the complete96

temporal evolution of deepening cumulus cloud fields over an entire spatial domain. Convective97
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cloud ensembles, during their different phases, provide domain-averaged variables for timescale98

analysis and/or for inferring physical controls on the s-t-d transition (e.g., cold pools, a critical99

lapse rate, congestus moistening, dynamical lifting) (Khairoutdinov and Randall 2006; Wu et al.100

2009; Waite and Khouider 2010; Hohenegger and Stevens 2013) . Oftentimes, a single criteria101

such as domain/ensemble averaged cloud growth rate (Wu et al. 2009) is employed to signify that102

the transition has occurred. A third category, often couched or framed in the language of the s-t-d103

transition, could more accurately be described as suppressed versus convectively active conditions104

(Sahany et al. 2012; Hagos et al. 2014; Powell and Jr. 2015). This category of studies, both mod-105

elling (Kuang and Bretherton 2006) and observational (Xu and Rutledge 2016) are representative106

of much larger-scale circulations and their dynamic and thermodynamic conditions in which cu-107

mulus fields transition to deep convection. Their “shallow-to-deep transition” takes place on the108

order of days to greater than one week.109

It should also be noted, however, that even the generic definition of three well-defined cumulus110

modes and their evolution may be overly idealized (Kumar et al. 2013). Consequently, we reserve111

some flexibility in defining the s-t-d transition, reflecting our approach and intent to create an112

easily reproducible metric. As noted above, we consider the time evolution of deep convective113

events at a single site concomitantantly with surrounding water vapor fields. We do not discern the114

thermodynamic or dynamic conditions leading to the transition nor whether the convective event is115

associated with an already mature propagating mesoscale convective system. Nevertheless, since116

our metric is derived from CTT temporal evolution (“warm” >280K shallow cumulus to “cold”117

<235K deep cumulonimbus), this ensures some form of s-t-d transition is captured during our118

convective events (see Section 2d) .119
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b. Study site120

The central Amazon, in and around Manaus (3.05S, 60.21W), represents a tropical rainforest121

climate with rainfall throughout the year, but with a notable minimum during July and August122

(Machado et al. 2004). There is a marked diurnal cycle; however, larger-scale synoptic forcing123

and/or long-lived mesoscale squall lines modulate the convective timing and intensity (Williams124

et al. 2002). Topographic relief is small (∼150m). Nevertheless, land-surface heterogeneity due125

to river-forest contrast generate favored zones of water vapor convergence (Adams et al. 2015)126

influencing precipitation timing and intensity (Fitzjarrald et al. 2008).127

To derive metrics, long-term mesoscale observational studies of tropical convection are nec-128

essary. The mesoscale ADGMN (∼100km x 100km) was created to study the complex inter-129

actions between water vapor and deep convection in a continental equatorial setting (Adams130

et al. 2015). The ADGMN (Figure 1) originally consisted of 10 sites, expanding to 21 sites131

during the last 8 months of the experiment 1. Due to the inaccesible rainforest or season-132

ally flooded terrain surrounding Manaus, sites were concentrated in the urban zone. Never-133

theless, the network spanned the subtle topographic effects, including elevated forest transition134

sites (EMBP, RDCK, RPDE, TRM3), low-lying rivers sites (CTLO,CMP1,CHR5, EMIR, HORT,135

MNCP, MNQI, PDAQ, TMB7), as well as a pristine rainforest station (ZF29). Mean station sep-136

aration is 41km, the largest (MNCP-RPDE) is 131km and the smallest (INPA-CHR5), 3.3km.137

Station concentration in Manaus implies highly correlated PWV, which is considered in Section138

2c.139

1The GOAM (GOAmazon) site created in anticipation of ARM Mobile Facility deployment (2014-15) had only 4 months of data and was

excluded from the present analysis.
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c. Data140

Tropical water vapor observations capturing convective evolution are either too infrequent (e.g.141

radiosondes, polar-orbiting satellites), invalid or of questionable quality under cloudy/rainy condi-142

tions (e.g., vertically pointing microwave radiometers, satellite IR). Condensate and precipitation143

effects at GNSS microwave frequencies are small (Solheim et al. 1999) and the accuracy of GNSS144

PWV relative to radiosondes and radiometers (≈1 to 2mm) has been well-established (Bevis et al.145

1992; Rocken et al. 1993). Even in the high humidity, logistically challenging environment of the146

Amazon, GNSS PWV is accurate (Sapucci et al. 2007; Adams et al. 2011a,b, 2015). The GNSS147

PWV observation cone (radius ∼10 km) and ADGMN site distribution permit capturing PWV148

field evolution from the cumulus stage to cumulonimbus lines or clusters.149

For the 21 stations, GNSS PWV was estimated every 5 minutes with GIPSY-OASIS (GPS-150

Inferred Positioning System and Orbit Analysis Simulation Software), utilizing geodetic-grade151

receivers and antennas and surface pressure and temperature from colocated meteorological sen-152

sors. Where meteorological sensors failed or did not exist (only NAUS site) pressure, using the153

hypsometric equation, and temperature were interpolated from the nearest station. The region’s154

homogeneous temperature fields and flat topography ensure this interpolation has neglible effects155

on PWV.156

To identify deep convective events, INPA surface precipitation as well as GOES 12 (10.7µm)157

satellite data were employed. Since INPA failed at the end of 2011, Tropical Rainfall Measuring158

Mission (TRMM) 3B42 (3 hour precipitation rate) from the 25 km x 25 km pixel centered over159

CHR5, the closest station, was used. GOES 12 IR brightness temperature; i.e., CCT, was cal-160

culated as the average of the 4 x 4 pixels (16 km x 16 km) corresponding to the GNSS cone of161

observation centered over INPA (2011) and over CHR5 (2012).162
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d. Methodology163

For calculating correlation decay timescales during the mesoscale evolution to deep convection,164

the convective events were identified essentially following Adams et al. (2013). A deep convective165

event was defined as reporting precipitation and, minimally, a 50K fall in CTT in less than 2166

hours to 235K or below. This definition results in minimizing misidentification of stratiform and167

showery congestus precipitation as deep convective precipitation as well as ensuring that a shallow168

cumulus stage is observed. Likewise, these strong CTT drops were associated with large upswings169

in PWV, the peak of which was utilized as the temporal identifier of the convective event origin170

(i.e., t = 0). The time series of the correlation vs distance slope, based on each time bin, was then171

extended backwards 14 hours prior to time of maximum PWV, as in Adams et al. (2013). This172

implies covering the entire diurnal cycle, though here we focus solely on the last 6 hours, which173

contains the s-t-d transition. Over the one-year period of study, 118 days reported some form of174

precipitation; however, only 67 deep convective events met these more stringent criteria.175

To quantify the spatiotemporal evolution of PWV, cross correlations between stations were cal-176

culated in 30 minute and 1 hour bins. Each time bin correlation was calculated from t = 0h (i.e.,177

convective event occurrence) every hour or every 30 minutes. For example, in the first hour with178

respect to convective event occurrence; that is, between t = 0h and t = -1h, there are 12 five-179

minute PWV values for each individual event. Given 67 convective events, this would then imply180

a maximum of 12 x 67 = 804 data points within that 1 hour time bin to be correlated with the181

corresponding t = 0h to t = -1h data points from a different station. This is then carried out for182

every time bin, t = -1h to t =-2h,..., up to t = -13h to t =-14h. With up to 20 other stations available183

for cross correlation in the corresponding 1 hour time bin, as many as 231 correlation coefficients184

enter into the calculation of the separation distance versus correlation coefficient. In this way, the185
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slope of correlation coefficient versus distance, for each 1 hour bin, was estimated (significant to186

the 95th percentile) from the fitted regression line fixed at correlation coefficient R = 1 at dis-187

tance x = 0 (see Figure 2). The change in slope of these fitted regression lines, as a function of188

time, is then evaluated. The resulting temporal evolution of spatial correlation is described by a189

simple functional form from which a time decay constant is derived, thereby providing an easily190

replicable metric.191

Taking into account the network’s irregular geographical configuration, the time evolution of the192

cross correlations was checked for sensitivity to this spatial distribution in two ways. Firstly, as a193

direct approach, 5 closely spaced and centrally located stations (PDAQ, PNT8, RDCK, INPA, and194

NAUS) were removed and the calculations repeated. The average station separation distance rose195

from 41km to 53km, diminishing the influence of these highly correlated stations. Secondly, we196

implemented a Monte Carlo approach in which one station was randomly removed and the data197

resampled. The correlation slope with distance for each time bin was recalculated for 100 trials.198

The time constant from the fitted function and its associated uncertainties were evaluated for the199

100 trials, and this was performed as 2 through 18 stations were removed (see Section 3).200

Considering that varying conditions (e.g., surface forcing or free tropospheric thermodynamic201

structure) may influence the correlation decay timescale, drier (July-December) versus wet season202

(January-April), as well as the diurnal cycle of convection, were examined. We provide more203

details on the latter in Section 3, given that the continental diurnal cycle and specifically from the204

Amazon Region (Betts and Jakob 2002a,b; Grabowski et al. 2006), among many others) underpins205

much of the original s-t-d transition research; this in addition to our goal of providing an easily206

replicable metric.207
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3. Results and Discussion208

The 67 convective events occurred mostly following the diurnal cycle (55 events) with two-209

thirds occurring between 12pm and 6pm local time (44 events). “Nocturnal” convection (8pm to210

12pm local time) consisted of only 12 events. For the purpose of seasonal comparison, the wet211

season consisted of 24 events while the drier seasons consisted of 27 without consideration for the212

time of occurrence. The 16 events occurring between April and July 2011 were not included in213

the seasonal comparison since only 10 GNSS meteorological sites existed at that time.214

Figure 2 displays the correlation coefficient as a function of distance for one hour time bins215

over the 67 convective events. For visual clarity, and to focus on the s-t-d transition, only the216

6 hours prior (t = -6h to t = 0) to the convective event are displayed. This figure represents the217

time evolution of spatial correlations; that is, the change in angle between the slopes for each time218

bin represents the temporal evolution of spatial decorrelation. The lines fitted to the correlation219

versus station separation distance are fixed to R = 1 at x = 0. Although scatter is large, the slopes220

calculated are all statistically significant (95th percentile). As one considers progressively earlier221

times before the development of convective activity (prior to t = -6h), the fitted lines fall closely222

one upon the other (not shown), and correlation decays only slightly (∼0.15) over the maximum223

separation distance of the network. Within t = 0h, correlation decays rapidly to ∼0.5 at the limit224

of separation distance (∼150km). When these slopes are expressed as a function of time, the225

functional form becomes apparent (Figure 3). From the analysis of these 67 events, there is a non-226

linear decay in correlation beginning around t = -4h and only a weaker quasi-linear decay back to227

t = -12h (Figure 3). In this figure, both 1 hour and 30 minute bins data are plotted making clear228

that this temporal binning is unimportant. The error bars represent the 95th percentile range for229
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the correlation vs distance coefficients used to derived the slope (i.e., the lines in Figure 2). Fitted230

with an exponential function, a correlation decay timescale of ∼3.5 hours is revealed.231

Solely for visualization purposes, PWV anomaly fields from t = -5h to t = 0h are shown in232

Figure 4. Anomalies were calculated by substracting the average (over all stations and all times)233

from the 1 hour bin average of the 67 events at each site. Cressman interpolation analysis was234

utilized for plotting; the plots being fairly insensitive to the radius of influence chosen. The PWV235

anomaly fields are fairly flat from t = -5h to t = -4h. Commencing at t = -3h, the water vapor fields236

become more structured, maximizing the PWV anomaly gradient, and concentrating the positive237

PWV anomalies (i.e., a proxy for water vapor convergence) in the central portion of the network.238

Given that the initiation of deep convection is associated with the largest positive PWV anomalies239

at INPA (2011) and CHR5 (2012), a maximum positive PWV anomaly centered near INPA, or240

nearby, should be expected. Similar results are obtained, not surprisingly, for CTT as shown in the241

example for the 55 diurnal convective events in Figure 7.242

To test the decay timescale robustness, data denial analyses were carried out. In the first case,243

the 5 clustered stations noted in Section (2c) were removed directly and statistics recalculated.244

The results are essentially identical with mean τ = 3.45 hours and σ = 0.362 hours. For the Monte245

Carlo random data denial analysis, the elimination of 10 sites produces a mean difference of -246

0.1h and an increase in σ of 0.21 to σ = 0.57 hours, indicating minimal influence of the station247

distribution.248

Decay timescale sensitivity to environmental conditions was gauged through analysis of wet sea-249

son versus the dry and dry-to-wet transition season as well as diurnal versus noctural convective250

events (Figure 5 and 6). Thermodynamic conditions, in particular stability measures, (e.g., CAPE,251

CIN) as well as the water vapor distribution vary seasonally in the Amazon, influencing the inten-252

sity and frequency of convection (Fu et al. 1999; Li and Fu 2004). The dry and dry-to-wet transi-253
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tion experience less frequent, but often more intense convection (Williams et al. 2002). During the254

wet season, precipitating convection is frequent and the free troposphere approaches a moist adia-255

bat tied to the sub-cloud layer, thereby limiting both CAPE and CIN, but increasing precipitation256

efficiency (Machado et al. 2004). Figure 5 contains a comparison of decay timescales associated257

with the 24 wet and 27 dry/dry-to-wet season convective events. The wet season demonstrates258

much greater heteorogeneity, with larger decreases in spatial correlations compared to dry/dry-259

to-wet seasons. Visual inspection of GOES CTT animations also show wider-spread cumulus260

convection typically deepening and organizing over different portions of the network during the261

wet season. Though wet-seasons spatial correlation scales are much smaller , the decay timescale262

are essentially the same; τ = 2.72h (wet) and τ = 3.02h (dry/dry-to-wet).263

Considering that the continental tropical diurnal cycle has strongly motivated the research of264

the s-t-d transition, we have examined diurnal vs nocturnal convection. From Figure 6, the decay265

timescale increases by approximately one hour, τ =2.83h (Diurnal) and τ =3.96h (Nocturnal).266

The nocturnal evolution deviates strongly from the exponential fit around t = -8h to t = -6h, but267

still displays the correlation drop off during the s-t-d transition; that is, the last 4 hours prior to268

deep convection (Adams et al. 2013). Examination of GOES CTT animations reveals no obvious269

deviating behavior 8 to 6 hours prior to t = 0 for these nocturnal events. Nonetheless, with only270

12 events, these statistics are certainly less reliable. To confirm that the s-t-d transition, as most271

commonly studied, is occurring, composites of CTT were also created for the diurnal convective272

events. In Figure 7, the composite CTT fields of the 55 diurnal event is presented. Prior to t =-3h,273

the CTT fields are homogeneous. Between t = -3h and the convective event (t =0), cloud fields274

begin to deepen rapidly (i.e., the s-t-d transition).275

The decay timescale derived from the above analysis is consistent with the 4-hour water vapor276

convergence timescale for the Amazon s-t-d transition (Adams et al. 2013). This provides for277
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a physical interpretation. Consider the simplest case of the 55 diurnal convective events. The278

10km radius GPS cone of view observes cumulus clouds interspersed with clear sky during the279

shallow phase. With solar insolation, convective boundary layer deepening and cumulus cloud280

growth result in d(PWV)/dt > 0 (a proxy for wv convergence in the atmospheric column). At this281

stage, all sites in the network essentially behave the same and PWV time evolution is correlated282

over greater distances. As congestus clouds grow, convergence zones begin to narrow. Figures283

5 and 6 of Khairoutdinov and Randall (2006) provide a nice visualization of this process (which284

they attribute to cold pool collisions). Simultaneously, wv convergence weakens over the “non-285

congestus regions” and spatial decorrelation increases. Finally, growth into deep cumulonimbus286

towers, lines and clusters with stronger vertical accelerations confines the zones of augmenting287

d(PWV)/dt > 0 even more so, and the rest of the network experiences much weaker, zero wv288

vapor convergence or perhaps even divergence. This deep convective stage further accelerates289

the decorrelation. Examining Figures 4 and 7, one can idealize the decorrelation length scale as290

the inverse of the probability of a station lying within the same contours as other stations. This291

probability decreases as t approaches 0h; i.e., more contours on the figures. The spatial structuring292

(i.e., decreased correlation length) and intensity of water vapor convergence are thus intrinsically293

tied together and, hence, is a useful gauge of the s-t-d transition . One could certainly speculate that294

growth into mesoscale convective systems again increases PWV correlation length given induced295

mesoscale circulations and associated water vapor convergence fields, but this will be investigated296

in another study.297

4. Conclusions and future work298

This derived correlation decay timescale is agnostic with respect to any of the putative phys-299

ical mechanisms responsible for the s-t-d transition. Nevertheless, for at least the case of con-300
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tinental tropical convection, high resolution models making mechanistic deductions with respect301

to convective evolution can now attempt to replicate this metric. In future work, ADGMN data302

will be employed to examine the possible role of cold pools in the s-t-d transition, correlating303

their occurence with the increase in water vapor convergence and observed cloud growth. For-304

tunately, in recent years, GNSS/GPS meteorology has expanded into tropical regions, COCONet305

in the Caribbean and TLALOCNet in Mexico. The large-scale networks provide many anchor306

sites around which mesoscale dense network can be created in varying topographic and climatic307

settings.308
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FIG. 1. Map of the Manaus Dense GNSS Meteorological Network from April 2011 to April 2012. The color

scheme represents the frequency of PWV data (11256 total data values) for the 67 convective events used in this

study. GOAM data were not utilized. PDAQ failed in October and was not utilized in the PWV anomaly plot
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FIG. 4. Plot of PWV anomalies (mm) fields calculated from average of 67 convective events for 5 hours before

convective events.
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FIG. 5. Temporal evolution of correlation vs separation distance slope with exponential fit and error bars for

wet (red, 24 events) versus dry and dry-to-wet season (blue, 27 events). The 16 events occurring during the

wet-to-dry transition are not included.
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FIG. 6. Temporal evolution of correlation vs separation distance slope with exponential fit and error bars for

diurnal (55 events, red) versus nighttime (12 events, blue).
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FIG. 7. Plot of the temporal evolution (t = -5h to t = 0h) of GOES cloud top temperature (K) fields calculated

for 55 diurnal convective events.
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