

AMS Meeting 2015 – Phoenix, January, 2015

ACONVEX: A NEW SITE IN CENTRAL AMAZONIA DEDICATED TO LONG-TERM CLOUD PROPERTIES OBSERVATIONS: DESCRIPTION, FIRST RESULTS AND FUTURE PERSPECTIVES

Henrique de Melo Jorge Barbosa (2), Theotonio Pauliquevis (1), David Kenton Adams (3, 8), Paulo Artaxo (2), Boris Barja (4), Alan James Peixoto Calheiros (7), Glauber Guimarães Cirino (5), Alexandre Correia (2), Helber Gomes (1), Diego Gouveia (2), Ariane Braga Oliveira (6), Marcelo Banik Pádua (7), Nilton Manuel Évora do Rosário (1), Rosa Maria Nascimento dos Santos (8), Luiz Fernando Sapucci (7), Rodrigo Augusto Ferreira de Souza (8), Bruno Takeshi Tanaka Portela (5)

(1) Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo (UNIFESP), Diadema, S.P., Brazil; (2) Instituto de Física da Universidade de São Paulo (IFUSP), São Paulo, S.P., Brazil; (3) Centro de Ciencias de la Atmósfera, Universidad Autonoma de México (UNAM), Mexico; (4) Centro Meteorológico de Camagüey, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, A.M., Brazil; (6) Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, São Paulo, S.P., Brazil; (7) Instituto Nacional de Pesquisas Espaciais, São José dos Campos, S.P., Brazil; (8) Universidade do Estado do Amazonas (UEA), Manaus, A.M., Brazil

Corresponding author: theotonio@gmail.com

Partner Institutions

"HOW CLOUDS WILL BEHAVE IN A WARMER PLANET?"

•Perhaps it is the most tricking question in global change;

•Clouds constitute the largest uncertainty in the climate system.

•There are solid reasons why our knowledge of clouds and their processes is very limited (Heitzenberger and Charlson, 2009).

"HOW TO ESTIMATE GLOBAL CHANGES IN CLOUD FEATURES WITHOUT AN "UNPERTURBED CLOUD" REFERENCE?"

• There is a need to establish a baseline of what we can stand for natural clouds, nad its

ANTHROPOGENIC FACTOR PERTURBING CLOUDS

CLOUD TYPE	PERTURBATION	POTENCIAL MECHANIS
Contrails	+Albedo	Water vapor and anthropogenic CCN/IN ¹
Contrails	Daily termal amplitude	Changes in air traffic afte Sept 11t ²
Ship Tracks	+Albedo	Water vapor anthropogen CCN ³
Continental Stratocumulus	+Albedo	Anthropogenic CCN ⁴
Continental Stratocumulus	Cloud Top Temperature	Anthropogenic CCN ⁵
Continental Stratocumulus	+Albedo	Anthropogenic CCN ⁶
Stratocumulus (global) at PBL	+Albedo	Anthropogenic CCN ⁷
Continental precipitating clouds	-Precipitation	Anthropogenic CCN ⁸
Continental deep convection	+Freezing level	Anthropogenic CCN ⁹
Continental shallow clouds	+Precipitation	CCN or IN seeding ¹⁰
Continental shallow clouds	+ Cloudiness	Change in surfasse fluxe due to landuse change ¹
PBL oceanic clouds	-R _{eff}	Anthropogenic CCN ¹²
Stratocumulus at PBL	-LWC	Anthropogenic soot ¹³
Cloud formation	+Atmospheric warming	GHG ¹⁴
Global Cloud Cover	+Cloudiness	Cosmic rays, ions, anthropogenic CCN ¹⁵
Pegional Weather	+- Sinoptic systems	Release ou redirecting o

- formation without anthropogenic influence;
- Few places in the world resembles the atmosphere before industrial era: Amazonia (during wet season, Antartida, remote oceanic areas (Andreae, 2007).
- ACONVEX (Aerosols, Clouds and cONVction EXperiment) will provide cloud data for decades, yielding a climatological perspective of what unperturbed clouds are in a tropical environment.

Adapted from Heitzenberger and Charlson, 2009

Experimental: ACONVEX site is located at 2.890738S,

59.970347W, as shon in the satellite picture. Central Amazonia, where the site is, is a region where cloud formation occurs most of time (specially during the wet season) without any significant influence of the the anthropogenic factors cited above. CENTRAL AMAZONIA was choosen because all meteorological systems that influence weather in Amazonia exert influence at least once in an year at Central Amazonia: 1) Local Convection; 2) Squall Lines; 3) Cold Fronts; among others.

			Cumulus		
Operating	Quantity observed	About to be installed	Stratus)	Size distribution of rain droplets (vertical profile)	Vertical Pointin
Multiangle Absorption Photometer	Absorption Coefficient	ASIVA (All Skiv Infrared Visible		Size distribution of rain droplets at surface	Disdrometer
Eddy covariance system – Campbell	Latent and sensible heat flux	Analyzer		Radiation (spectral) difuse and direct	MFR, CIMEL
	Vertical profile of T, RH and liquid water	IR Clear-sky Subtracted Image		Cloud Optical Thickness	ASIVA
Radiometer– Radiometrics	Scattering coefficient (3 lambdas)	15 0 and St			
Nephelometer – Aurora	T, V, U, Precip			Water vapor	GPS/GNSS (24) integrated)
Met. Station – Gill	Vertical profile of raindrop Size Distribution				Lidai (iligiti, vei
Micro rain radar – Metek				Cloud base height	Lidar; Ceilomet
Collânsetre leventike	Cloud base and top heights (up to three layers	1203 211		Cloud top height	GOES Satellite
Cellometro – Jenoptiks	T, V, U, Radiation			Liquid water Content (vertical profile)	Microwave radi
wet. Station – Thies	Size distribution of rain drops at ground level	0.0 0.1 0.2 0.3 0.4 0.5		Atmospheric column	GPS/GNSS
Disdrometer – Thies	T. V. a. Precip		Multiplayer	integrated water vapor	
Met. Station – Davis			clouds	Cloud Optical Thickness	ASIVA
	Integrated Water Vapor	New GNSS (IWV)	(cumulunimbus)	Rain rate (at cloud base)	Vertical Pointin
GNSS Receiver – Trimble	Total and diffuse hemispheric radiation in 7	, ,		Size distribution of rain dronlets (vertical profile, at	Vertical Pointin
MFR - Multi filter shadow band	lambdas	New Ceilometer (VAISALA)		cloud base)	v ertieur i onnthi
radiometer –	AOT in 5 lambdas			Size distribution of rain droplets at surface	Disdrometer
Sun photometer – Cimel	Vertical profile of aerosols (24 hs) and water			Rain rate	Met station
UV Raman LIDAR – Raymetrics	vapor (night only)				

	••••	
Scient	tific a	bbroac

Cloud Type	Important parameters	Instrument related	Scientific issues to be addressed	
	Cloud fraction	ASIVA; GOES satellite; Ceilometer	 Cloud Radiative Forcing Area/perimeter ratio: connected to entrainment 	
v clouds (fair uther nulus, ntus)	Liquid water Content (vertical profile)	Microwave radiometer	Characterize the evolution of shallow convection before shallow to deep conversion, and relate it to microphysics and macrophysics observations.	
	Diurnal cycle of shallow convection	ASIVA		
	Cloud base height , PBL height	Lidar; ASIVA		
	Cloud top height	Ceilometer; Satélite GOES		
	Cloud layer thickness	Ceilometer		
	Rain rate (warm clouds)	Vertical Pointing Radar	Allows inferring coalescence efficiency	
	Size distribution of rain droplets (vertical profile)	Vertical Pointing Radar	in warm clouds, relating time evolution of effective radii with macrophysical	
	Size distribution of rain droplets at surface	Disdrometer	thickness, among others.	
	Radiation (spectral) difuse and direct	MFR, CIMEL	Cloud Radiative Forcing, associated	
	Cloud Optical Thickness	ASIVA	with cloud cover measurements.	
	Water vapor	GPS/GNSS (24hs, column integrated) Lidar (night, vertical profile)	Associate water vapor availability with shallow clouds formation (cloud cover, CAPE, CINE, diurnal cycle, and moment of <i>shallow to deep convection</i> transition)	
	Cloud base height	Lidar; Ceilometer	Associate physical thickness with	
	Cloud top height	GOES Satellite	LWC, water vapor convergence, and precipitation rate just below cloud and	
	Liquid water Content (vertical profile)	Microwave radiometer	at surface. Cloud Optical Thickness obtained with	
	Atmospheric column Integrated water vapor GPS/GNSS	ASIVA can be compared with Cloud Top Temperature and total water content at MODIS (AQUA satellite)		
ltiplayer 1ds	Cloud Optical Thickness	ASIVA	passing.	
mulunimbus)	Rain rate (at cloud base)	Vertical Pointing Radar		
	Size distribution of rain droplets (vertical profile at cloud base)	Vertical Pointing Radar	Microphysical quantities of precipitation associated with deep convection. It has to be related with previous shallow convection evolution	
	Size distribution of rain droplets at surface	Disdrometer		
	Rain rate	Met station		

Site location

nsmark 2000. ¹⁶ Hoffman 2002

RESULTS OF OBSERVATIONS FOR SELECTED PERIODS OF 2011, 2012 and 2013.

1-min morphology of rain events

Cloud base heights: shallow convection evolution.

Water vapor dynamics: diurnal/annual cycle; WV convergence, deep convection and precipitation

Left-top figure shows mean T, RH and precipitation for all observations. It is clear that there is a preferable time, in the afternoon, to the occurrence of rain events. Right-top figure shows a histogram of rain events resolved by maximum precipitation rate, local time and frequencies. Clearly the most intense precipitation happens around 16h (LT).

Bottom figure is the same as upper left but only around rain events. Center time is the moment of maximum precipitation, and data are shown for +- 2 hr of rain events. This is the MEAN, typical rain event at Amazonia: maximum precipitation rate ~ 50 mm/hr; intensities increase very fast 5 minutes before the peak, and last for 12 minutes until reach the pre-rain intensity. Mean volume is 10 mm. Intensive rain average volume (between -5 and + 12 min) comprises to 7.8 mm.

The remarkable fact is the existence of a time scale for rain events. Another time scale was also observed for IWV.

0 2 4 6 8 10 12 14 16 18 20 22 24	0 2 4 6 8 10 12 14 16 18 20 22 24	0 2 4 6 8 10 12 14 16 18 20 22 24
Time UTC (hour)	Time UTC (hour)	Time UTC (hour)

Plots above show the mean monthly diurnal cycle of cloud base heights observed with a Ceilometer. Height shown above correspond to the first cloud layer that the instrument see.

The most important feature above is the gradual increase of cloud base heights from ~ 100 m (before sunrise) to 1000m-1500m at12LT (16UTC). It is strongly connected to the evolution of Planetary Boundary Layer and the establishment of a shallow cumulus field. One of the goals of this proposal is to investigate the relationship of this field of fair weather cumulus with the diurnal cycle of precipitation. Actually, numerical models based on cumulus parameterization lack the ability to make rain occur in the correct time (see figures at left). This fail is due to the impossibility of such models, that run with 10 km (in the best case), while fair weather cumulus size is $\sim 0.5 - 2.0$ km.

Fair weather cumulus are important because they 1) transport humidity from lower to mid levels of the atmosphere, and 2) Reduce available shortwave radiation, thus slowing convection and postponing deep convection.

This is na open question until now, and we hope that our observation contribute to understand it better.

5.00 June t-8hr t-4 hr t=0 t+4hr

Clouds are formed when air humidity reaches saturation. In convective areas it is usually associated to water vapor convergence. Adams et al (2012) showed that deep convection is strongly associated with a sudden peak in IWV.

Bottom figure shows mean values (for 2011) of the following quantities: Cloud Top Temperature (CTT, in red, from GOES); IWV (derived using a TRIMBLE/GNSS sensor) and precipitation. The two triangles show critical moments where IWV starts to increase: 8hs and 4hs before the deep convection/rain event. It means that the rain event actually started to be constructed several hours before its moment.

Top figures show (for April-December of 2012) the diurnal and annual cycle of IWV. Differences between days (and also months) are significantly high (not shown), but the shape of the daily cycle curve is reasonably the same for an entire 24 hours period.

CONCLUSION: Results are very preliminar, but it is possible to see that once the site is fully operational it will provide, in a climatological time scale, valuable information with respect to clouds and precipitation features in na almost pristine location, and a baseline data set for natural clouds in tropical areas.

Acknowledgments: We acknowledge to EMBRAPA for all the local support, specially to Dr. Luiz Marcelo Brum Rossi and Victor de Souza. We acknowledge to CNPq (grants: 477757/2012-0; 458017/2013-2 and FAPESP) (grants: 2013/05014-0; 2013/50510-5) for the financial support to this proposal.