

Additional global warming caused by crossing critical thresholds within the Earth's cryosphere

Nico Wunderling

IRTG1740 – São Paulo

11.09.2018

Introduction

PhD student in IRTG1740 and FAPESP @ PIK & USP (H. Barbosa, J.F. Donges & R. Winkelmann)

Stay in Brasil: Until 17.10.2018

Introduction

PhD student in IRTG1740 and FAPESP @ PIK & USP (H. Barbosa, J.F. Donges & R. Winkelmann)

Stay in Brasil: Until 17.10.2018

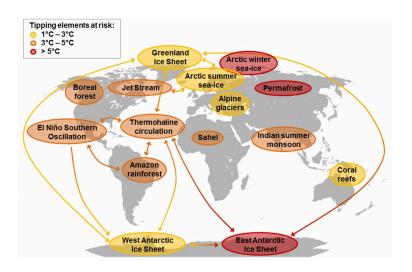
Research interests:

- 1) Tipping elements in the Earth system:
 - i. *Climate models*: CLIMBER-2: Today
 - ii. Conceptual models: Differential equations Work in progress
 - iii. Data analysis: E.g. Causal effect networks

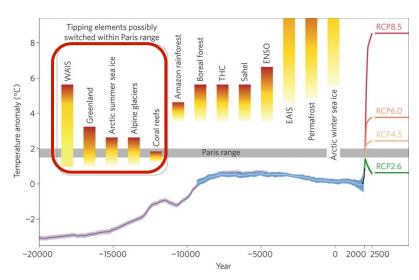
Introduction

PhD student in IRTG1740 and FAPESP @ PIK & USP (H. Barbosa, J.F. Donges & R. Winkelmann)

Stay in Brasil: Until 17.10.2018

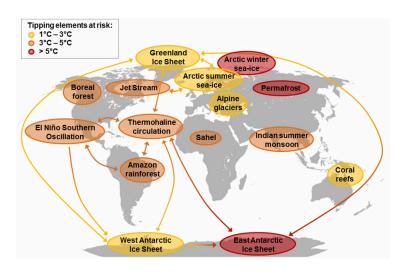


Research interests:

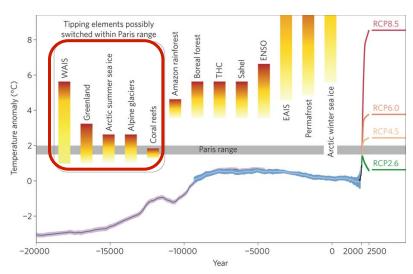

- 1)Tipping elements in the Earth system:
 - i. Climate models: CLIMBER-2: Today
 - ii. Conceptual models: Differential equations Work in progress
 - iii. Data analysis: E.g. Causal effect networks
- 2) Further interests:
 - i. Networks of tipping elements
 - ii. Social tipping elements
 - iii. Climate history in South America (16-18th century)

Tipping elements in the Earth system can be grouped into clusters according to their temperature threshold

Steffen et al.(2018), PNAS



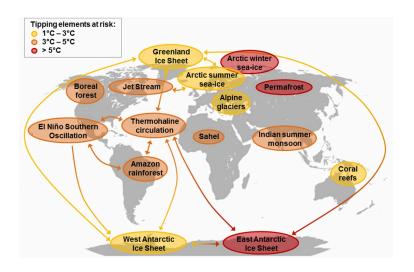
Schellnhuber et al.(2016), NCC



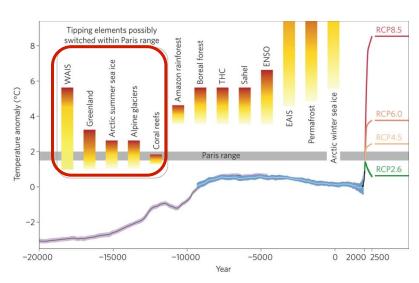
Tipping elements in the Earth system can be grouped into clusters according to their temperature threshold

Steffen et al.(2018), PNAS

Schellnhuber et al.(2016), NCC


→ Some TEs are at risk of transgressing their critical threshold within the Paris range

Simple model
$$4 \cdot \gamma \sigma T^4 = S_0 (1 - \alpha) <=> T = \sqrt[4]{\frac{S_0 (1 - \alpha)}{4\gamma \sigma}} \Rightarrow \Delta T = 0.27 \pm 0.11^{\circ} C$$

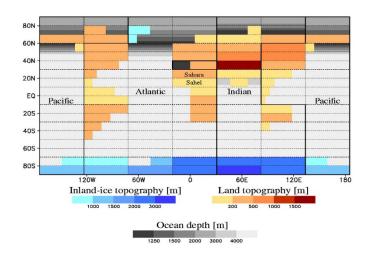


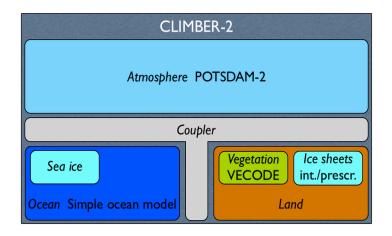
Tipping elements in the Earth system can be grouped into clusters according to their temperature threshold

Steffen et al. (2018), PNAS

Schellnhuber et al.(2016), NCC

Research question:


How would the tipping of cryosphere elements affect the GMT? Which are the relevant feedbacks?

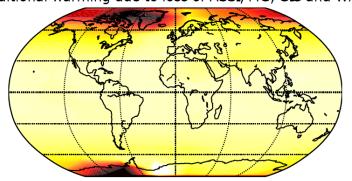


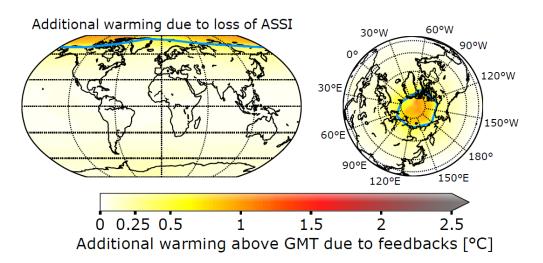
Climate model: CLIMBER-2

- CLIMBER-2: Earth system model of intermediate complexity (EMIC)
- Coarse spatial resolution \rightarrow computationally efficient: > 3000 eq. runs
- Ability to reconstruct drivers (fast climate feedbacks)

Petoukhov, et al.(2000), Climate Dynamics & Ganopolski, et al.(2001), Climate Dynamics

Project together with: Ricarda Winkelmann, Jonathan Donges & Matteo Willeit

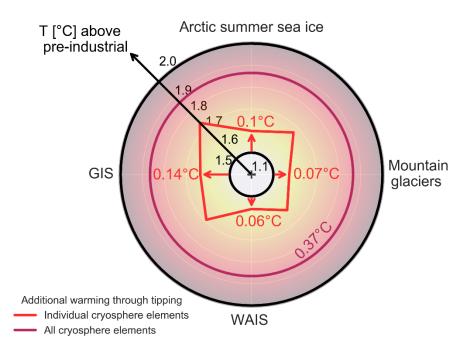


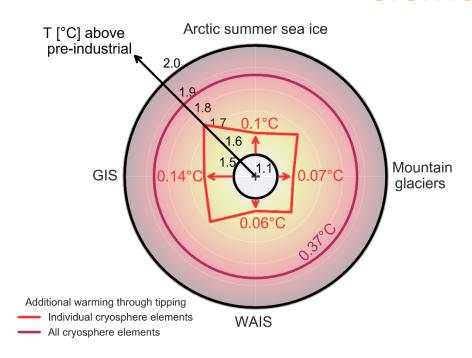


Regional warming due to feedbacks

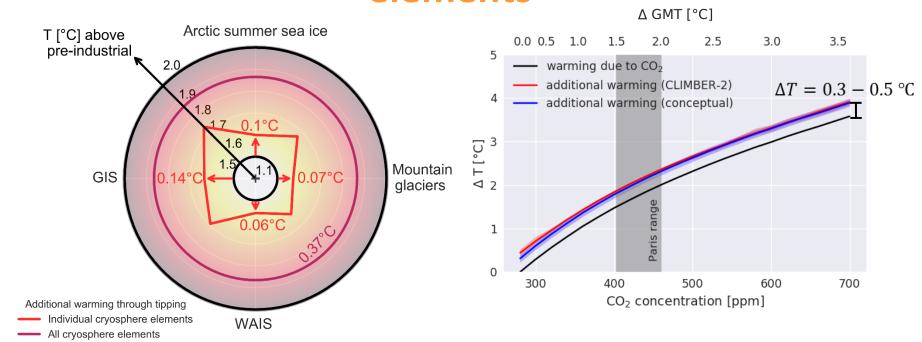
Additional warming compared to $1.5^{\circ}C$ above pre-industrial

Additional warming due to loss of ASSI, MG, GIS and WAIS



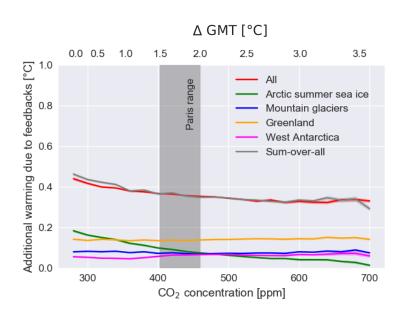

GMT increase due to tipping of cryosphere elements

GMT increase due to tipping of cryosphere elements

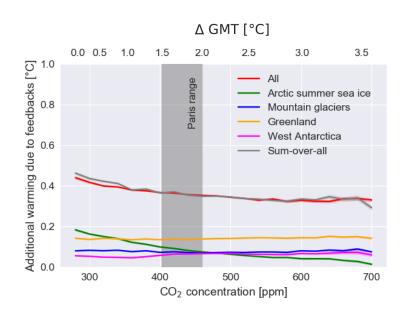


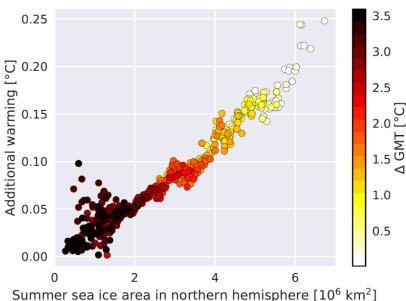
- 1. Additional global warming: $0.37\pm0.03^{\circ}\text{C} => \text{commitment up to } 25\% \text{ higher than due to combustion of fossil fuels only (simple model: <math>0.27\pm0.11^{\circ}\text{C}$)
- 2. Climate warming self-amplifying in such scenarios

GMT increase due to tipping of cryosphere elements



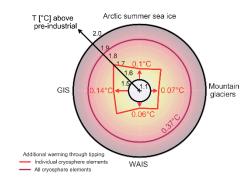
- 1. Additional global warming: $0.37\pm0.03^{\circ}\text{C}$ => commitment up to 25% higher than due to combustion of fossil fuels only (simple model: $0.27\pm0.11^{\circ}\text{C}$)
- 2. Climate warming self-amplifying in such scenarios
- 3. Additional warming signal robust over range of CO_2 -concentrations


Linearity of additional warming due to critical transition of tipping elements



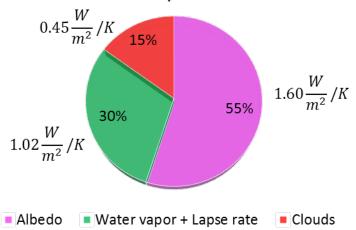
- 1. Additional warming signal robust over range of \mathcal{CO}_2 concentrations
- 2. Time scales: ice-sheet basins: centennial to millennial, Arctic could become ice-free during summer within the 21st century

Linearity of additional warming due to critical transition of tipping elements



- Additional warming signal robust over range of CO_2 concentrations
- Time scales: ice-sheet basins: centennial to millennial, Arctic could become ice-free during summer within the 21st century

Contributions from fast climate feedbacks



Contributions from fast climate feedbacks

Drivers of additional warming at

1.5 °C above pre-industrial

2. Water vapor: Additional capacity to sustain water vapor in the air

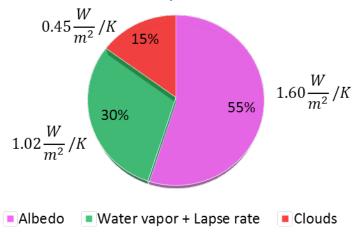
3. Lapse rate: Change of vertical temperature profile

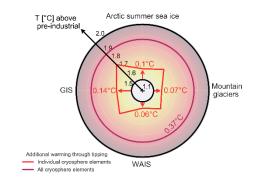
4. Clouds: Rearrangement of clouds

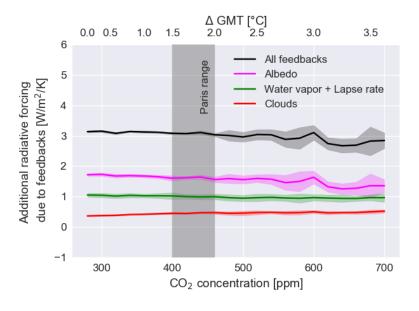
Arctic summer sea ice

Mountain

T [°C] above pre-industrial


Additional warming through tipping
Individual cryosphere elements

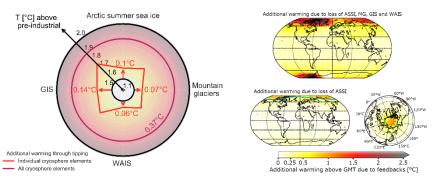

All cryosphere elements


Contributions from fast climate feedbacks

Drivers of additional warming at

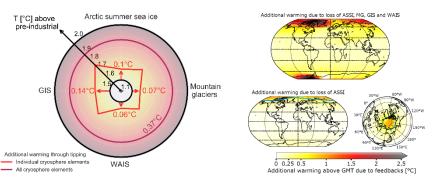
1.5 °C above pre-industrial

1. Albedo: Change of surface albedo

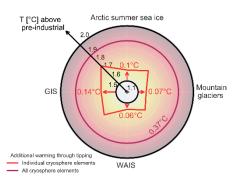

2. Water vapor: Additional capacity to sustain water vapor in the air

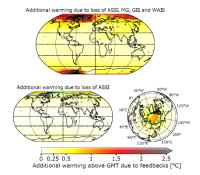
3. Lapse rate: Change of vertical temperature profile

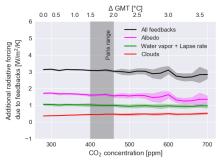
4. Clouds: Rearrangement of clouds

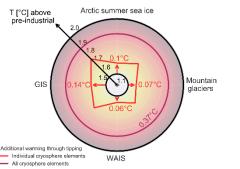


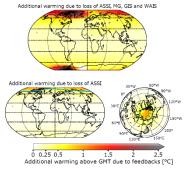
- 1. Additional warming due to tipping of cryosphere elements: $0.37\pm0.03~^{\circ}\mathrm{C}$
 - i. Actual commitment to climate change 25% higher than due to CO_2 emissions only
 - ii. Implications towards Paris goal until 2100 and beyond



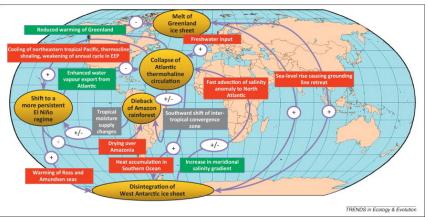



- 1. Additional warming due to tipping of cryosphere elements: 0.37 ± 0.03 °C
 - i. Actual commitment to climate change 25% higher than due to \mathcal{CO}_2 emissions only
 - Implications towards Paris goal until 2100 and beyond
- 2. Properties of additional warming:
 - i. First-order mean-field effect
 - ii. Global warming self-amplifying in such scenarios





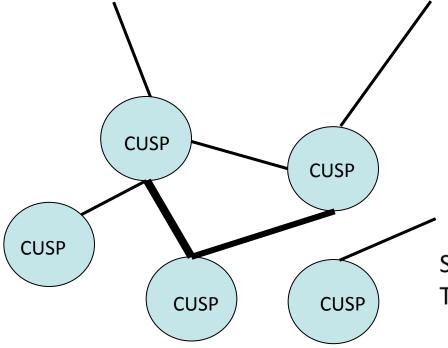

- 1. Additional warming due to tipping of cryosphere elements: 0.37 ± 0.03 °C
 - i. Actual commitment to climate change 25% higher than due to CO_2 emissions only
 - ii. Implications towards Paris goal until 2100 and beyond
- 2. Properties of additional warming:
 - i. First-order mean-field effect
 - ii. Global warming self-amplifying in such scenarios
- 3. Split of warming into its drivers: Albedo (55%), Water vapor & Lapse rate (30%), Clouds feedback (15%)

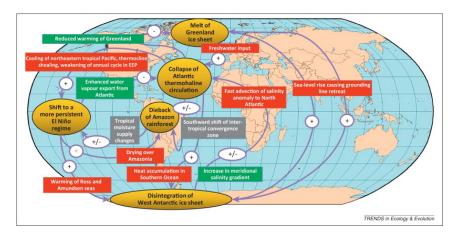


- 1. Additional warming due to tipping of cryosphere elements: 0.37 ± 0.03 °C
 - i. Actual commitment to climate change 25% higher than due to CO_2 emissions only
 - ii. Implications towards Paris goal until 2100 and beyond
- Properties of additional warming:
 - i. First-order mean-field effect
 - ii. Global warming self-amplifying in such scenarios
- 3. Split of warming into its drivers: Albedo (55%), Water vapor & Lapse rate (30%), Clouds

feedback (15%)

Lenton & Williams (2013), Trends in ecology & evolution


Direct and indirect coupling => Are tipping cascades possible?



OUTLOOK:

Conceptual tipping points on networks

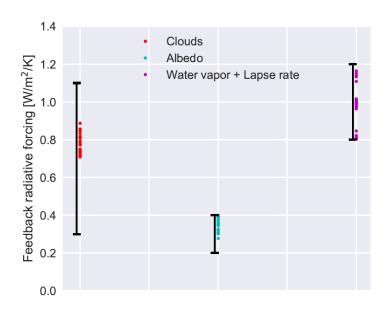
Simplified approaches to capture climate TEs, e.g., using the CUSP equation:

$$\frac{dx_{i}}{dt} = -a_{i}x_{i}^{3} + b_{i}x_{i} + c_{i} + \sum_{\substack{ij\\i\neq j}} d_{ij}x_{i}$$

Key literature

- 1. Lenton, T.M., Held, H., Kriegler, E., Hall, J.W., Lucht, W., Rahmstorf, S. and Schellnhuber, H.J., 2008. Tipping elements in the Earth's climate system. Proceedings of the national Academy of Sciences, 105(6), pp.1786-1793.
- 2. Steffen, W., Rockström, J., Richardson, K., Lenton, T.M., Folke, C., Liverman, D., Summerhayes, C.P., Barnosky, A.D., Cornell, S.E., Crucifix, M. and Donges, J.F., 2018. Trajectories of the Earth System in the Anthropocene. *Proceedings of the National Academy of Sciences*, p.201810141.
- 3. Schellnhuber, H.J., Rahmstorf, S. and Winkelmann, R., 2016. Why the right climate target was agreed in Paris. Nature Climate Change, 6(7), p.649.
- 4. Petoukhov, V., Ganopolski, A., Brovkin, V., Claussen, M., Eliseev, A., Kubatzki, C. and Rahmstorf, S., 2000. CLIMBER-2: a climate system model of intermediate complexity. Part I: model description and performance for present climate. Climate dynamics, 16(1), pp.1-17.
- 5. Ganopolski, A., Petoukhov, V., Rahmstorf, S., Brovkin, V., Claussen, M., Eliseev, A. and Kubatzki, C., 2001. CLIMBER-2: a climate system model of intermediate complexity. Part II: model sensitivity. Climate Dynamics, 17(10), pp.735-751.
- 6. Kriegler, E., Hall, J.W., Held, H., Dawson, R. and Schellnhuber, H.J., 2009. Imprecise probability assessment of tipping points in the climate system. Proceedings of the national Academy of Sciences, 106(13), pp.5041-5046.
- 7. Lenton, T.M. and Williams, H.T., 2013. On the origin of planetary-scale tipping points. *Trends in ecology & evolution*, *28*(7), pp.380-382.

Back Up slides



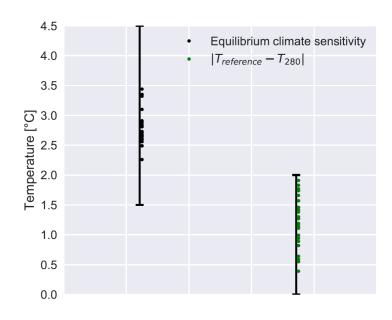
Calibration of CLIMBER-2 – Part I (feedbacks)

Model Set-up

Calibration: 2xCO₂ radiative feedback forcing scenarios from GCMs

(Soden & Held (2006))

Parameter	Varied range (Mean)	
Γ_0 : Temp. lapse rate parameter	$4.7 - 5.2 (5.0) \cdot 10^{-3}$	
Γ_1 : Temp. lapse rate parameter	$3.6 - 4.4 (4.0) \cdot 10^{-5}$	
Γ_2 : Temp. lapse rate parameter	$0.7 - 1.3 (1.0) \cdot 10^{-3}$	
a_q : Temp. lapse rate parameter	$25 - 35 (30) \cdot 10^{-3}$	
OD_1 : Cloud optical depth parameter	9.5 - 10.5 (10.0)	
OD_2 : Cloud optical depth parameter	7.5 - 8.5 (8.0)	
C_t : Tropopause height parameter	0.765 - 0.785 (0.775)	
A_{CO21} : Integral transmission of atm.	0.3 - 0.65 (0.5)	
c_1 : Cloudiness height parameter	$0.180 - 0.186 \ (0.183)$	
α_{snow} : Diffusive new snow albedo	$0.85 - 1.0 \ (0.95)$	



Calibration of CLIMBER-2 – Part II (climate sensitivity)

Model Set-up

Calibration: 2xCO₂ radiative feedback forcing scenarios from GCMs

Equilibrium climate sensitivity:

Temperature sensitivity per coubling of CO_2

$\left|T_{reference}-T_{280}\right|$:

Pre-industrial temperature difference between the reference run ($T_{reference}$) and the comparison run (T_{280}) should be below $\pm 2^{\circ}$ C

Alle feedback strengths at 1.5 °C above pre-industrial

	LR + WV	Clouds	Albedo	All feedbacks
Arctic summer sea ice	$1.05^{+0.21}_{-0.18}$	$0.57^{+0.09}_{-0.13}$	$2.42^{+0.17}_{-0.17}$	$4.05^{+0.16}_{-0.21}$
Greenland ice sheet	$1.08^{+0.17}_{-0.13}$	$0.52^{+0.04}_{-0.09}$	$1.69^{+0.11}_{-0.10}$	$3.29^{+0.09}_{-0.06}$
West Antarctic ice sheet	$1.04_{-0.19}^{+0.15}$	$0.67^{+0.24}_{-0.13}$	$2.08^{+0.27}_{-0.20}$	$3.8^{+0.4}_{-0.4}$
Mountain glaciers	$1.14^{+0.23}_{-0.26}$	$0.60^{+0.21}_{-0.22}$	$2.1^{+0.4}_{-0.3}$	$3.80^{+0.25}_{-0.27}$
All elements	$1.02^{+0.30}_{-0.15}$	$0.45^{+0.07}_{-0.07}$	$1.60^{+0.16}_{-0.24}$	$3.08^{+0.05}_{-0.05}$

Drivers of additional warming: For each cryosphere element separately and together

