Additional global warming caused by crossing
critical thresholds within the Earth’s cryosphere
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Research interests:

1)Tipping elements in the Earth system:
i.  Climate models: CLIMBER-2: Today
ii.  Conceptual models: Differential equations — Work in progress
iii. Data analysis: E.g. Causal effect networks
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Stay in Brasil: Until 17.10.2018

Research interests:

1)Tipping elements in the Earth system:
i.  Climate models: CLIMBER-2: Today
ii.  Conceptual models: Differential equations — Work in progress
iii. Data analysis: E.g. Causal effect networks

2)Further interests:
i.  Networks of tipping elements
ii. Social tipping elements
iii. Climate history in South America (16-18th century)
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Tipping elements in the Earth system can be grouped
into clusters according to their temperature threshold

Tipping elements possibly

RCP8.5
switched within Paris range
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Tipping elements in the Earth system can be grouped
into clusters according to their temperature threshold

Tipping elements possibly RCP8.5
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- Some TEs are at risk of transgressing their critical threshold within the Paris
range

Simplemodel 4 - yoT* =S,(1 —a) <=>T = 4/% = AT = 0.27 £ 0.11°C
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Tipping elements in the Earth system can be grouped
into clusters according to their temperature threshold

Tipping elements atrisk: Tipping elements possibly RCP8.5
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Research question:

How would the tipping of cryosphere elements affect the GMT? Which are the
relevant feedbacks?
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e CLIMBER-2: Earth system model of intermediate complexity (EMIC)
e Coarse spatial resolution = computationally efficient: > 3 000 eq. runs
e Ability to reconstruct drivers (fast climate feedbacks)

CLIMBER-2
Atmosphere POTSDAM-2
= . Pacific Pacific
. Vegetation
120W 60W 0 60E 120E 180 - VECODE int./ prescr.

Inland-ice topography [m] Land topography [m]
. =

1000 1500 2000 3000 200 500 1000 1500

Ocean depth [m]
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Petoukhov, et al.(2000), Climate Dynamics & Project together with:
Ganopolski, et al.(2001), Climate Dynamics Ricarda Winkelmann, Jonathan Donges
& Matteo Willeit
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Additional warming compared to 1.5°C above pre-industrial

Additional warming due to loss of ASSI, MG, GIS and WAIS

“Til1s00w
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Additional warming above GMT due to feedbacks [°C]
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GMT increase due to tipping of cryosphere
elements

T [°C] above Arctic summer sea ice
pre-industrial

Mountain

GIS glaciers

Additional warming through tipping
== |ndividual cryosphere elements WAIS
=== All cryosphere elements
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T [°C] above Arctic summer sea ice
pre-industrial

Mountain
glaciers

Additional warming through tipping
- |ndividual cryosphere elements WAIS
=== All cryosphere elements

Main results:

1. Additional global warming: 0.37+0.03°C => commitment up to 25% higher
than due to combustion of fossil fuels only (simple model: 0.27 + 0.11°C)
2. Climate warming self-amplifying in such scenarios
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A GMT [°C]
T [°C] above Arctic summer sea ice

pre-industrial 0005 10 15 2.0 2.5 3.0 3.5

5
—— warming due to CO;
—— additional warming (CLIMBER-2) AT = 03 —05°C
4 —— additional warming (conceptual)
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Additional warming through tipping CO; concentration [ppm]

- |ndividual cryosphere elements WAIS
=== All cryosphere elements

Main results:

1. Additional global warming: 0.3740.03°C => commitment up to 25% higher
than due to combustion of fossil fuels only (simple model: 0.27 + 0.11°C)

2. Climate warming self-amplifying in such scenarios

3. Additional warming signal robust over range of CO,-concentrations
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Linearity of additional warming due to critical
transition of tipping elements

A GMT [°C]
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Main results:

1. Additional warming signal robust over range of C0O, concentrations
Time scales: ice-sheet basins: centennial to millennial, Arctic could
become ice-free during summer within the 21st century
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A GMT [°C]
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Main results:
Additional warming signal robust over range of CO, concentrations
Time scales: ice-sheet basins: centennial to millennial, Arctic could
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Contributions from
fast climate feedbacks
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T [°C] above Arctic summer sea ice

Contributions from T

) /X
fast climate feedbacks ol LD e e
Drivers of additional warming at e
1.5 °C above pre-industrial T Mo IS
w
045 /K

w
L60—s /K

w
102— /K

= Albedo = Water vapor + Lapse rate = Clouds

1. Albedo: Change of surface albedo

2. Water vapor: Additional capacity to sustain water vapor in the air
3. Lapserate: Change of vertical temperature profile
4

Clouds: Rearrangement of clouds
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T [°C] above Avrctic summer sea ice

Contributions from
fast climate feedbacks

| Mountain
| glaciers

Drivers of additional warming at

Additional warming through tipping -
—— Individual cryosphere elements WAIS
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1. Albedo: Change of surface albedo

2. Water vapor: Additional capacity to sustain water vapor in the air
3. Lapserate: Change of vertical temperature profile

4. Clouds: Rearrangement of clouds
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T [C] above Arctic summer sea ice Additional warming due to loss of ASSL, MG, GIS and WAIS
pre-industrial

Toev

: %. SR &
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Mountain
glaciers

Additional warming through tipping
== Individual cryosphere elements WAIS 0 0.25 0.5 1 1.5 2 2.5
= All cryosphere elements Additional warming above GMT due to feedbacks [°C]

1. Additional warming due to tipping of cryosphere elements: 0.37 £ 0.03 °C
i Actual commitment to climate change 25% higher than due to CO, emissions only

ii.  Implications towards Paris goal until 2100 and beyond
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T [°C] above Arctic summer sea ice
pre-industrial

Mountain
glaciers

Additional warming through tipping
—— Individual cryosphere elements WAIS
= All cryosphere elements

Additional warming due to loss of ASSI, MG, GIS and WAIS
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Additional warming due to loss of ASSI

0 0.250.5 1 1.5 2 2.5
Additional warming above GMT due to feedbacks [°C]

Additional warming due to tipping of cryosphere elements: 0.37 + 0.03 °C

Actual commitment to climate change 25% higher than due to €O, emissions only

Implications towards Paris goal until 2100 and beyond

Properties of additional warming:

First-order mean-field effect
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Global warming self-amplifying in such scenarios
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T [°C] above Arctic summer sea ice Additional warming due to loss of ASSI, MG, GIS and WAIS AGMT [C]
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—— Clouds

Paris range
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Additional warming through tipping
—— Individual cryosphere elements WAIS 003505 1 1.5 2 2.5
= All cryosphere elements Additional warming above GMT due to feedbacks [°C]

Additional warming due to tipping of cryosphere elements: 0.37 + 0.03 °C
i Actual commitment to climate change 25% higher than due to €O, emissions only
ii.  Implications towards Paris goal until 2100 and beyond
Properties of additional warming:
i. First-order mean-field effect
ii.  Global warming self-amplifying in such scenarios

Split of warming into its drivers: Albedo (55%), Water vapor & Lapse rate (30%), Clouds
feedback (15%)
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T [°C] above Arctic summer sea ice Additional warming due to loss of ASSL, MG, GIS and WAIS AGMT [ C]
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= All cryosphere elements Additional warming above GMT due to feedbacks 1

Additional warming due to tipping of cryosphere elements: 0.37 + 0.03 °C
i Actual commitment to climate change 25% higher than due to €O, emissions only
ii.  Implications towards Paris goal until 2100 and beyond
Properties of additional warming:
i. First-order mean-field effect
ii.  Global warming self-amplifying in such scenarios
Split of warming into its drivers: Albedo (55%), Water vapor & Lapse rate (30%), Clouds
feedback (15%)
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OUTLOOK:

Conceptual tipping points
on networks

TRENDS in Ecology & Evolution

Simplified approaches to capture climate

TEs, e.g., using the CUSP equation:
dxi

E = —aix? + bixi + Ci + Z ij dijxl-
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Calibration: 2xCO, radiative feedback forcing scenarios from GCMs
(Soden & Held (2006))

14
T 10 i:s:jz Parameter Varied range (Mean)
T Water vapor + Lapse rate [o: Temp. lapse rate parameter 4.7-5.2(5.0) -107°
2 10 [';: Temp. lapse rate parameter 3.6 —4.4 (4.0) -107°
2 ! ['y: Temp. lapse rate parameter 0.7—1.3(1.0) -10°3
508 |! a,: Temp. lapse rate parameter 25 — 35 (30) - 1073
S OD;: Cloud optical depth parameter | 9.5 — 10.5 (10.0)

% 00 O Ds: Cloud optical depth parameter 7.5 — 8.5 (8.0)
% o4 C'y: Tropopause height parameter 0.765 — 0.785 (0.775)
S Y Acoor: Integral transmission of atm. 0.3 —0.65 (0.5)
802 c¢1: Cloudiness height parameter 0.180 — 0.186 (0.183)
anow: Diffusive new snow albedo 0.85 — 1.0 (0.95)
0.0
O L) O
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Calibration: 2xCO, radiative feedback forcing scenarios from GCMs

D

Temperature [°C]
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Equilibrium climate sensitivity
|Treference - T280|

Equilibrium climate sensitivity:
Temperature sensitivity per coubling of CO,

|Treference - T280|:
Pre-industrial temperature difference between
the reference run (T ¢ ference) @and the comparison

run (T ,g0) should be below +2°C
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LR+ WV | Clouds | Albedo | All feedbacks
Arctic summer sea ice 1.05703 | 0.57509 | 2427010 | 4.057028
Greenland ice sheet 1.08H01T 1 0524008 | 1.69101L | 3.207009
West Antarctic ice sheet | 1.047915 | 0.67702 | 2.087027 3.8%01
Mountain glaciers 1147033 1 0.60705% | 2.1703 3.801022
All elements 1024939 1 0454097 | 1.60+518 | 3.08+09

Drivers of additional warming: For each cryosphere element separately and together
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