LFA - Journal Club

Discussão: Optical properties of PM2.5 particles: Results from a monitoring campaign in southeastern Italy

Bruno Backes Meller Departamento de física aplicada Universidade de São Paulo bruno.meller@usp.br

28 de fevereiro de 2019

Atmospheric Environment 203 (2019) 35-47

Optical properties of PM2.5 particles: Results from a monitoring campaign in southeastern Italy

Salvatore Romano^{a,*}, Maria Rita Perrone^a, Giulia Pavese^b, Francesco Esposito^c, Mariarosaria Calvello^b

^a Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy

^b Istituto di Metodologie per l'Analisi Ambientale, Consiglio Nazionale delle Ricerche, Potenza, Italy

^c Scuola di Ingegneria, Università della Basilicata, Potenza, Italy

Recebido 15 Junho 2018 - Recebido em forma revisada 16 January 2019 - Aceito 19 January 2019

Extraído de: https://www.sciencedirect.com/science/article/pii/S1352231019300676?via%3Dihub

Motivação

Testar a performance de métodos de classificação de aerossóis baseados em parâmetros ópticos intensivos e explorar suas características.

Sítio de medidas

- Área plana.
- A 6km do centro de Lecce (95 mil hab.).
- Longe de grandes centros urbanos.
- Vegetação local é tipicamente de cultura de oliveiras.

Sítio de medidas e fontes

- Distâncias:
 - ~20km dos mares
 Adriático e Jônico.
 - ~100km da costa da Península Balcânica.
 - ~800km da costa do norte africano.
- Impactado por pluma poluída da Europa, marinha, de poeira, de queimadas (Perrone et al., 2014, 2015, 2018)

Instrumentação e medições

- Nefelômetro
 - Aurora, modelo Ecotech 3000.
 - Mede nos comprimentos de onda 450, 525, e 635 nm.
 - Resolução de 5min.
- Aetalômetro
 - Magee Scientific, modelo AE31.
 - Mede nos comprimentos de onda 370, 470, 520, 590, 660, 880, e 950 nm.
 - Resolução de 5min.
- Medidas foram realizadas no inverno do hemisfério norte, de 22 de Dezembro de 2015 a 30 de Março de 2016.
- Parâmetros ópticos calculados em 470nm e 660nm.

Propriedades óticas intensivas

- Não dependem da concentração de partículas e estão associadas com as suas propriedades intrínsecas.
- A dependência espectral de SAE e AAE segue ~ uma lei de potência (Ångström, 1929)

$$egin{aligned} ext{SAE}\left(\lambda_{1},\lambda_{2}
ight) &= -rac{ln\left[rac{\sigma_{s}\left(\lambda_{1}
ight)}{\sigma_{s}\left(\lambda_{2}
ight)}
ight]}{ln\left(rac{\lambda_{1}}{\lambda_{2}}
ight)} \ ext{AAE}\left(\lambda_{1},\lambda_{2}
ight) &= -rac{ln\left[rac{\sigma_{a}\left(\lambda_{1}
ight)}{\sigma_{a}\left(\lambda_{2}
ight)}
ight]}{ln\left(rac{\lambda_{1}}{\lambda_{2}}
ight)} \end{aligned}$$

Fonte: (Moosmüller, H., et al. 2011)

Propriedades óticas intensivas

 Não dependem da concentração de partículas e estão associadas com as suas propriedades intrínsecas.

$$\mathrm{SSA}\left(\lambda
ight) \ = \ rac{\sigma_{\mathrm{s}}(\lambda)}{\sigma_{\mathrm{s}}(\lambda) + \sigma_{\mathrm{a}}(\lambda)}$$

dSSA
$$(\lambda_1, \lambda_2) = SSA (\lambda_1) - SSA (\lambda_2)$$

- dSSA<0 pode ser ligado a maior SSA em 660 nm por poluição contendo BC.
- dSSA>0 pode ser associado a maior SSA em 470nm pela poeira mineral contendo óxido de ferro.
- Predominância de partículas grossas leva a dSSA>0 (Ackerman and Toon, 1981).
- Já a ausência de partículas grossas na mistura leva a dSSA<0 (Bergstrom et al., 1973)

Propriedades de espalhamento e absorção

 Coef. de absorção e espalhamento fortemente modulados pela velocidade do vento (Perrone et al., 2015)

Parameters	Mean	SD	Median	Min	Max
σs (470 nm) [Mm-1]	88	40	51	3	576
σs (660 nm) [Mm-1]	54	25	34	2	383
σa (470 nm) [Mm-1]	16	10	8	1	102
σa (660 nm) [Mm-1]	10	6	5	1	67

Propriedades ópticas intensivas

 Partículas finas são mais dispersas que partículas grossas pela ação do vento (Perrone et al., 2015)

Parameters	Mean	SD	Median	Min	Max
SAE (470, 660 nm)	1.4	0.6	1.5	-0.7	3.0
AAE (470, 660 nm)	1.5	0.3	1.4	0.6	3.4

Propriedades ópticas intensivas

- SSA e dSSA variam significativamente no dia.
- SSA diminui nas primeiras horas do dia: finas partículas absorvedoras.
- dSSA mínimo: finas partículas absorvedoras (Bergstrom et al., 2007) e máximo: contribuição de partículas de modo grosso (Ackerman and Toon, 1981).

Parameters	Mean	SD	Median	Min	Max
SSA (470 nm)	0.83	0.09	0.86	0.30	0.99
SSA (660 nm)	0.84	0.10	0.87	0.32	0.99
dSSA (470, 660 nm)	0.00	0.07	0.00	-0.33	0.52

Distinguindo partículas por prop. intensivas

- Partículas com muita variedade
- dSSA com range que estreita
- SSA e dSSA relacionados ao tamanho

Distinguindo partículas por prop. intensivas

- Grande contribuição das partículas com SAE>1, vindas do centro e do leste da Europa (Aaltonen et al., 2006)
 - SAE baixo -> σs e σa baixos
 - SAE~ -0.5 : poeira do Saara para altos σ / partículas do Atlântico para pequenos σ (Pandolfi et al., 2011)

Distinguindo partículas por prop. intensivas

- Melhor define clusters de partículas
- Informações sobre tamanho e composição
- dSSA pode ser usado para separar claramente os dados ópticos (Costabile et al., 2013 e Russel et al., 2010)
- Região intermediária: alta variedade de misturas de partícula

Dust Dominated and Marine

Cluster	SAE (470, 660 nm)	AAE (470, 660 nm)	SSA (470 nm)	dSSA (470, 660 nm)	N
(a) dust-do minated	-0.80.2	2.0-3.5	0.87–0.99	0.01-0.07	179
(b) marine	-1-0	0.0-1.2	0.85–0.99	-0.01-0.08	152

- SAE negativos (grandes partículas)
- dSSA positivo para dust dominated e próximo de 0 em marine.

Large and low/Small and high absorbing particles

	Cluster	SAE (470, 660 nm)	AAE (470, 660 nm)	SSA (470 nm)	dSSA (470, 660 nm)	Ν
	(c) LLAP	0.2–0.8	0.0-1.2	0.70-0.96	0.00-0.06	255
insted	(d) SHAP	1.0–1.8	0.0–1.1	0.40-0.89	-0.09-0.00	438

- Possivelmente partículas marinhas e antrópicas contribuíram para LLAP.
- Contribuição significativa de BC em SHAP.

BC-dominated and Mixed Dust

(a)	Cluster	SAE (470, 660 nm)	AAE (470, 660 nm)	SSA (470 nm)	dSSA (470, 660 nm)	Ν
(a) dust-dominated (b) marine (c) LLAP (d) SHAP (c) SC dominated	(e) BC-domi nated	2.0-3.5	0.8–1.6	0.39–0.85	-0.100.02	459
(f) mixed dust (g) OC-dominated (h) large OC	(f) mixed dust	0-1	1.8–3.5	0.57-0.97	-0.01-0.09	213

OC-Dominated and Large OC

(a)	Cluster	SAE (470, 660 nm)	AAE (470, 660 nm)	SSA (470 nm)	dSSA (470, 660 nm)	N
) dust-dominated) marine) LLAP) SHAP) BC-dominated	(g) OC-domi nated	1.5-2.3	1.8-3.5	0.67–0.95	-0.03-0.05	355
mixed dust) OC-dominated) large OC	(h) large OC	1.2-1.5	1.4–1.7	0.66–0.96	-0.01-0.03	705

- A maior parte dos dados ópticos medidos dos clusters (a) dust dominated, (b) marine e (e) BC dominated (>83%) são de dias específicos e medidas contínuas.
- Foram identificados através de modelos de simulação e outros artigos, eventos específicos nas datas relacionadas aos clusters.

 A maior parte (>97%) dos dados do cluster a(dust dominated) foram monitorados durante evento de poeira identificado via Barcelona Super computing Center – Dust Regional Atmospheric Model em 28-29 de Fevereiro de 2016, e a severa tempestade de areia que afetou o sudeste italiano em 22-23 de Março de 2016 (Rizza et al., 2018)

Cluster	Start Time (dd/mm/yy; UTC time)	End Time (dd/mm/yy; UTC time)	SAE (470, 660 nm)	AAE (470, 660 nm)	dSSA (470, 660 nm)	σS (470 nm) [Mm−1]
a (dust domina	28/02/16; 23:15	29/02/16; 05:15	-0.53	2.30	0.03	141
ted)	22/03/16; 16:05	23/03/16; 07:40	-0.50	2.68	0.03	254

- A maior parte (>91%) das partículas marinhas (cluster b) foram monitoradas em 5 diferentes dias de fevereiro e março de 2016.
- As trajetórias das massas de ar feitas pelo modelo HYSPLIT mostram que essas massas de ar atravessaram o Mar Mediterrâneo em altitudes muito baixas antes de chegar no sítio.

Cluster	Start Time (dd/mm/yy; UTC time)	End Time (dd/mm/yy; UTC time)	SAE (470, 660 nm)	AAE (470, 660 nm)	dSSA (470, 660 nm)	σS (470 nm) [Mm−1]
b (marine)	13/02/16; 05:20	13/02/16; 11:45	-0.26	1.10	0.07	12
	15/02/16; 21:40	16/02/16; 04:45	-0.35	1.05	0.03	38
	05/03/16; 20:20	06/03/16; 04:15	-0.09	1.06	0.02	19
	12/03/16; 04:10	12/03/16; 08:30	-0.14	0.99	0.03	16
	13/03/16; 01:40	13/03/16; 05:05	-0.21	0.85	0.05	11

Trajetórias de quatro dias chegando ao site de monitoramento em (a) 270, (c) 500, and (e) 1000 m acima da superfície, em dias e horas consideradas responsáveis advecção das partículas marinhas. different days and times and considered responsible for the advection of marine particles. Cores diferentes são relacionados a dias diferentes.

• Maior parte (>83%) dos dados ópticos relativos ao cluster e, de partículas dominadas por BC, foram monitoradas em 7 diferentes intervalos de tempo.

Cluster	Start Time (dd/mm/yy; UTC time)	End Time (dd/mm/yy; UTC time)	SAE (470, 660 nm)	AAE (470, 660 nm)	dSSA (470, 660 nm)	σS (470 nm [Mm–1]
e (PC dominato	23/12/15; 21:50	24/12/16; 06:15	2.19	1.30	-0.04	170
d)	04/01/16; 00:30	04/01/16; 07:05	2.11	1.35	-0.05	83
	19/01/16; 10:55	20/01/16; 15:40	2.41	1.31	-0.05	85
	23/01/16; 08:35	23/01/16; 15:15	2.07	1.36	-0.03	27
	25/01/16; 09:00	25/01/16; 16:25	2.17	1.14	-0.06	34
	06/02/16; 00:30	06/02/16; 15:30	2.33	1.31	-0.05	18
	11/02/16; 19:30	12/02/16; 06:25	2.12	1.46	-0.04	90

Conclusões

- O plot AAE versus SAE, color-coded pelos correspondentes valores de dSSA, foi considerada a melhor representação gráfica para a identificação de diferentes populações de aerossol.
- Os ranges de SAE, AAE, and dSSA foram selecionados com o objetivo de destacar as características específicas da população de aerossol, mas não são as únicas possibilidades de classificação por causa das suaves e contínuas mudanças dos parâmetros óticos intensivos do sítio.
- A habilidade do esquema de classificação de identificar partículas de diferentes tipos também resulta da análise da maior parte dos dados, medidos em poucos períodos de tempo, associados com clusters dust-dominated, marine, e BC-dominated. Foi verificado que estes dados se referem a dias afetados por massas de ar que atravessaram o norte da África, o Mar Mediterrâneo e regiões com poluição antrópica da Europa, antes de chegar ao sítio.
- Esse artigo também mostra que as contínuas e suaves mudanças não permitem identificar unicamente os diferentes tipos de população de aerossóis, pelas múltiplas contribuições de fontes naturais, antrópicas, locais e de longa distância.

Referências

- Moosmüller, H., et al. "Absorption Ångström coefficient, brown carbon, and aerosols: basic concepts, bulk matter, and spherical particles." *Atmospheric Chemistry and Physics* 11.3 (2011): 1217-1225.
- Ångström, Anders. "On the atmospheric transmission of sun radiation and on dust in the air." *Geografiska Annaler* 11.2 (1929): 156-166.
- Cui, Fenping, et al. "An intensive study on aerosol optical properties and affecting factors in Nanjing, China." *Journal of Environmental Sciences* 40 (2016): 35-43.
- Ackerman, Thomas P., and Owen B. Toon. "Absorption of visible radiation in atmosphere containing mixtures of absorbing and nonabsorbing particles." *Applied Optics* 20.20 (1981): 3661-3668.
- Bergstrom, R. W. "Extinction and absorption coefficients of the atmospheric aerosol as a function of particle size." *Contr. Atmos. Phys* 46 (1973): 223-234.
- Perrone, M. R., et al. "Integration of optical and chemical parameters to improve the particulate matter characterization." *Atmospheric Research* 205 (2018): 93-106.
- Perrone, M. R., S. Romano, and J. A. G. Orza. "Columnar and ground-level aerosol optical properties: sensitivity to the transboundary pollution, daily and weekly patterns, and relationships." *Environmental Science and Pollution Research*22.21 (2015): 16570-16589.

- Perrone, M. R., S. Romano, and J. A. G. Orza. "Particle optical properties at a Central Mediterranean site: Impact of advection routes and local meteorology." *Atmospheric research* 145 (2014): 152-167.
- Bergstrom, Robert W., et al. "Spectral absorption properties of atmospheric aerosols." *Atmospheric Chemistry and Physics* 7.23 (2007): 5937-5943.
- Aaltonen, V., et al. "Measurements of optical properties of atmospheric aerosols in Northern Finland." *Atmospheric Chemistry and Physics* 6.5 (2006): 1155-1164.
- Pandolfi, M., et al. "Variability of aerosol optical properties in the Western Mediterranean Basin." *Atmospheric Chemistry and Physics* 11.15 (2011): 8189-8203.
- Costabile, F., et al. "Identification of key aerosol populations through their size and composition resolved spectral scattering and absorption." *Atmospheric Chemistry and Physics* 13.5 (2013): 2455-2470.
- Russell, P. B., et al. "Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition." *Atmospheric Chemistry and Physics* 10.3 (2010): 1155-1169.
- Rizza, Umberto, et al. "Sensitivity of WRF-Chem model to land surface schemes: Assessment in a severe dust outbreak episode in the Central Mediterranean (Apulia Region)." *Atmospheric Research* 201 (2018): 168-180.

dSSA (470, 660 nm)

Cluster	SAE (470, 660 nm)	AAE (470, 660 nm)	SSA (470 nm)	dSSA (470, 660 nm)	N
(a) dust-dominated	-0.80.2	2.0-3.5	0.87–0.99	0.01-0.07	179
(b) marine	-1-0	0.0-1.2	0.85–0.99	-0.01-0.08	152
(c) LLAP	0.2–0.8	0.0-1.2	0.70-0.96	0.00-0.06	255
(d) SHAP	1.0–1.8	0.0–1.1	0.40-0.89	-0.09-0.00	438
(e) BC-dominated	2.0-3.5	0.8–1.6	0.39–0.85	-0.100.02	459
(f) mixed dust	0-1	1.8-3.5	0.57-0.97	-0.01-0.09	213
(g) OC-dominated	1.5–2.3	1.8-3.5	0.67–0.95	-0.03-0.05	355
(h) large OC	1.2-1.5	1.4-1.7	0.66–0.96	-0.01-0.03	705

