Synergy of MERRA-2 modeling and Raman lidar measurements for characterization of aerosol properties over West Africa

Igor Veselovskii Physics Instrumentation Center, Russia UMBC JCET, USA

Motivation

• Study of inversion of MW Raman lidar measurements to particle properties started more than 15 years ago

D. Muller et al., 1999; I. Veselovskii et al., 2002

- The most practical configuration of Raman lidar is based on tripled Nd:YAG laser (3 β +2 α)
- Typical uncertainties of estimation today are:

Volume	~ 20-30%
Effective radius	~20-30%
Real part of refractive index	± 0.05
Imaginary part (when Im>0.01)	~ 50%

• Experience accumulated was used for 3 β +2 α space lidar proposal (ACE)

Lidar measurement requirements

 $\pm 15\%$ accuracy for backscattering (β) at 355, 532, 1064 nm $\pm 15\%$ accuracy for extinction (α) at 355, 532 nm $α \ge 0.05 \text{ km}^{-1}$ at UV $α \ge 0.02 \text{ km}^{-1}$ at MV

So called $3\beta + 2\alpha$ set

Microphysical parameters

Aerosol effective radius Aerosol refractive index Aerosol concentration Aerosol SSA Aerosol absorption Aerosol type

However...

• Problem is underdetermined (only 5 input data). Information content of lidar measurements is limited.

Burton et al., 2016; Kahnert and Andersson, 2017; Alexandrov and Mishchenko 2017

- Moreover, refractive index can be spectrally and size dependent
- Additional information is needed. It can be obtained from passive instruments: sun radiometers or polarimeters
- Another possibility is synergy with aerosol transport models

How model can be used in lidar inversion?

For example, model data can be used as a first guess, so minimized cost function is (Kahnert, 2017):

$$J = \frac{1}{2}(x - x_b)^T B^{-1}(x - x_b) + \frac{1}{2} [H(x) - y]^T R^{-1} [H(x) - y] \qquad y = H(x) + \varepsilon$$

B, R – error covariance matrices

First step is to study how well the model predictions agree with lidar observed profiles of extinction (α) and backscattering (β). Ground based Raman lidar is capable to measure α and β with uncertainty below 10%.

MERRA-2 (Modern-Era Retrospective analysis for Research and Applications)

Based on GEOS-5 (Goddard Earth Observing System) Includes GOCART (Goddard Chemistry, Aerosol, Radiation and Transport model) Assimilates AOD from MODIS, AVHRR, MISR, and AERONET

Model includes 5 aerosol components: dust, sea salt, black and organic carbon, sulfates

Compone	nt	r _{min} , μm	r _{max} μm	r _{eff} μm	m _{R355}	m _{R532}	m _{R1064}	m _{I355}	m ₁₅₃₂	m _{I1064}	3.0
Dust	Bin 1	0.1	1.0	0.64	1.53	1.53	1.53	0.007	0.0026	0.0022	
	Bin 2	1	1.5	1.32	1.53	1.53	1.53	0.007	0.0026	0.0022	
	Bin 3	1.5	3.0	2.30	1.53	1.53	1.53	0.007	0.0026	0.0022	5 - ss2
	Bin 4	3.0	7.0	4.17	1.53	1.53	1.53	0.007	0.0026	0.0022	S S 3
	Bin 5	7.0	10.0	7.67	1.53	1.53	1.53	0.007	0.0026	0.0022	<u>5 2.0</u> <u>S S 4</u>
Sea Salt	Bin 1	0.03	0.1	0.08	1.51	1.50	1.47	2.9E-7	1.2E-8	1.97E-4	
	Bin 2	0.1	0.5	0.27	1.51	1.50	1.47	2.9E-7	1.2E-8	1.97E-4	ĺ ĺ
	Bin 3	0.5	1.5	1.07	1.51	1.50	1.47	2.9E-7	1.2E-8	1.97E-4	(^{1.5}
	Bin 4	1.5	5	2.55	1.51	1.50	1.47	2.9E-7	1.2E-8	1.97E-4	
	Bin 5	5	10	7.3	1.51	1.50	1.47	2.9E-7	1.2E-8	1.97E-4	
OC		0.01	0.29	0.09	1.53	1.53	1.52	0.048	0.009	0.016	
BC		0.01	0.29	0.04	1.75	1.75	1.75	0.46	0.44	0.44	0 20 40 60 80 100
SU		0.01	0.29	0.157	1.45	1.43	1.42	1E-8	1E-8	2.9E-6	RH,%

<u>RH=0</u>

The SHADOW campaign in Senegal 2015

Organized by Lille University

Multiwavelength Raman lidar $3\beta + 2\alpha + 1\delta$

Measurements were performed at 47 deg to horizon

MERRA-2 modeling

OD in 0.88-5.04 km at 532 nm

dust, organic carbon, black carbon, sulfates, sea salt

Strong smoke episode on 24-25 December 2015 Cimel MPL measurements

Raman lidar measurements on 24-25 December 2015

Back trajectories at 04:00

Wind measurements with Doppler lidar

Time UTC

Altitude AGL (m)

Time UTC

Atmospheric parameters 25 December 00:00 Sonde measurements

Backscattering and extinction coefficients measured by Raman lidar

Model predictions

Contribution of different components to backscattering and extinction at 532 nm at 21:00.

Extinction (EAE) and backscattering (BAE) Angstrom at 355/532 nm together with depolarization

Depolarization vs extinction Angstrom exponent

Use of depolarization measurements for separation the smoke and dust contributions to backscattering at 532 nm

Assuming the depolarization of dust and smoke is 35% and 7% respectively, their contributions were separated. Contribution of dust to α_{532} in the center of elevated layer is 30% (model predicts 40%).

Comparison with model. Arrival of smoke layer

LOA 24 Dec 2015 - Level 1. PI: D.Tanre

Temporal sequence of model extinction profiles

Optical depth at 355

Extinction profiles at 532 nm are shifted by 0.1 km⁻¹

Extinction profiles at 355 and 532 nm

Lidar

Model

Profiles are shifted on 0.1 km⁻¹

Extinction weakly depends on particle shape and imaginary part of RI, so comparison is straightforward

Comparison of lidar and model extinction at 355 nm

Mean difference 0.01 km-1 Stand. deviation 0.042 km-1

Comparison of backscattering

Comparison of backscattering for dust is more challenging:

- Backscattering is sensitive to the particles shape
- We don't know imaginary part of RI

In measurements of dust over West Africa the mean values are: Im(532)=0.003-0.005 Im(355)=0.02 – 0.03 In model for dust: Im(532)=0.0025 Im(355)=0.007 (basing on OMI)

From Ansmann et al., 2011 Imaginary part of dust during SAMUM campaign (symbols)

Comparison of backscattering coefficients obtained with lidar and model

Choice of Im(355)=0.007 is very reasonable.

Lidar ratios at 355 agree well with observations (70 sr), but at 532 nm the model value (40 sr) is lower than measured one (50 sr).

Extinction, backscattering Angstrom (355/532) and depolarization. Model and lidar values.

Comparison of water vapor profiles

Vapor mixing ratio, g/kg

Mean difference 0.04 g/kg Stand. deviation 1.6 g/kg

Model helps to understand observations

On 24 Dec we have low depolarization in near surface layer

Evolution of cirrus clouds on 24 – 27 Dec.

Plans for future: application of model for study of clouds formation

What did we learn?

Model provides:

- Correct location of near ground and elevated layers.
- Correct composition (dust, smoke) of layers.
- Correct values of extinction (in many cases).

However dust is mixed with smoke. It is desirable to consider the episodes with pure dust with layers extended up to 4-5 km.

Dust event 2-3 April 2015

3 April 00:00. Modeled and measured profiles

Dust episode 3-4 April 2015

MERRA-2 prediction

4 April 00:00 UTC

What can we conclude from considered dust episodes?

Modeled and measured intensive parameters show good agreement

	LR 355	LR 532	Angstrom
MERRA-2	70 sr	41 sr	-0.12
Lidar	70±7 sr	50±5sr	-0.12±0.05

• Observed Angstrom exponent for all cases rises with height. Dust is always "polluted". Model provides it.

• Modeled extinction profiles in general agree well with observations, though for some cases difference may reach~100%.

Two approaches to inversion of lidar data

Optical data (α or β) at different λ are calculated from equation:

Inversion of lidar observations on 25 Dec

Effective radius

Volume

SSA

Spheres (s) and spheroids (ns) are used in inversion

Spectral dependence of mI is not accounted for

Another approach to inversion

- Instead PSD we can try to retrieve concentrations of 5 aerosol components used in MERRA-2: dust, organic carbon, black carbon, sulfates, sea salt.
- Problem becomes determined
- Spectral and size dependence of RI is accounted
- This is standard inverse problem of mixture separation by spectral signatures. Negative concentrations are normally the issue.
- We should be confident in components properties.

Dependence of refractive index on relative humidity used in MERRA-2

Can we trust model?

 Spectral dependence of Im for OC is probably too strong. We never observed LR355>75.
Spectral dependence of mR for SU is

questionable. It assumes LR532>LR355.

Simplified approach to inversion

RH=0

Four aerosol components :

$$\alpha = \varphi_1 \alpha_1 + \varphi_2 \alpha_2 + \varphi_3 \alpha_3 + \varphi_4 \alpha_4$$
$$\varphi_1 + \varphi_2 + \varphi_3 + \varphi_4 = 1$$

 $\boldsymbol{\phi}$ - the fraction of extinction attributed to a given component

 $\phi~$ is varied from 0 to 1.0 with step 0.01 Usually α_{532} is considered

For minimization we use $3\beta+2\alpha+1\delta$ data Depolarization of pure dust is assumed to be 35%. For dust we assume also $LR_{355}=70$ sr $LR_{532}=50$ sr

 $\beta_{532}/\beta_{1064}=1.1$

Preliminary results of inversion on 24-25 Dec

Future plans

•Development of inversion scheme including MERRA-2 predictions.

• Use the MERRA-2 in analysis the field campaign data. In March-May 2017 the Raman lidar measurements in Crete, Cypress and Israel (Haifa) were performed.

Crete MERRA-2 modeling

OD in 0.9-5.0 km at 532 nm

Cypress MERRA-2 modeling

OD in 0.9-5.0 km at 532 nm

OD in 0.9-5.0 km at 532 nm

