

Characterization of cirrus clouds at São Paulo Metropolitan Region (SPMR) studied with Systematic Elastic Lidar Measurements

ELIANE G. LARROZA, C. Hoareau, W. Nakaema, E. Landulfo , R. Boareau, P. Keckhut

elarroza.ipen@gmail.com

IPEN Brazil, LATMOS-IPSL, UVSQ, Guyancourt, France

Outline

Motivation

Introduction

Material and methods

Results

Conclusions

Perspectives

Use of one methodology for characterization and classification of cirrus cloud at Sao Paulo city (RMSP) by lidar system, building up a cirrus cloud data base.

What is?

1) Generally fibrous-like appearance;

2) Predominantly temperature below -40°C;

3) Composed basically by ice crystals;

4) Altitudes ~ 7-20 km (tropics), near the tropopause.

- 5) Optical Depth (τ_c):
- τ_c < 0.03 sub-visible cirrus (SVC) clouds
- $\bullet 0.03 <\!\! \tau_{c} \!\! < \! 0.3$ thin cirrus clouds
- τ_c >0.3 cirrus opaque

Why?

http://geo.arc.nasa.gov/sge/jskiles/fliers/all_flier_prose/cirrusc limate_kinne/cirrusclimate_kinne.html

Global distribution of average frequency of occurrence of cirrus clouds identified by the Cloudsat/CALIPSO of 1-year average of daylight and nighttime measurements by Sassen et al., 2008.

Global distribution of average frequency of occurrence of cirrus clouds identified by the Cloudsat/CALIPSO of 1-year average of daylight and nighttime measurements by Sassen et al., 2008.

Information of the optical and microphysical properties of thin cirrus are essential to the understanding of atmospheric radiation budget and climate, particularly over the tropics. Material and methods

LIDAR: Light detection and Ranging

Configuration (2007):

- Coaxial and vertical pointing
- Laser Nd:YAG @ 532 nm
- Telescope: diameter 30 cm & focus = 1.5 m
- Backscattered light collection: Photomultiplier
- + interference filter (1nm FWHM) to reduce background
- Acquisition: dual system (analogic and foton counting)
- Range: 15 km/30 km with 15 m vertical resolution
- Temporal Resolution: 100ns, file acquisition each 2 minutes
- Channel: elastic backscattering (*Rayleigh* and *Mie*)

All cirrus clouds similar?

Derived geometric parameters from lidar

- Top height
- Bottom height
- Thickness
- temperature from radiosonde

Derived optical properties from lidar

- Transmittance
- Optical Depth
- Lidar Ratio

Basic information about the	underlying lidar data set	of this study on June-Ju	y 2007
-----------------------------	---------------------------	--------------------------	--------

Months	June/July
No. of meas. days	34
No. of meas. min.	10710
No. of cirrus day	16
No. of cirrus observations (stationary period)	104
Cirrus detected (min)	5798
Cirrus detected (%)	54

Optical Depth(τ_c)

⁽radiosonde or Standard Atmosphere)

Elaborated by R. Bourayou

Non-gaussian distributions a sign of different cloud types?

Material and methods

Next step: Multivariate Analyses to determine the class of cirrus

Clustering analyses: 4 classes at São Paulo (sub-tropical region)

Characteristics of the four cirrus classes							
Class type	1 Thick upper troposphere or near tropopause cirrus	2 Mid-upper troposphere thin cirrus	3 Thick mid-upper troposphere cirrus	4 Thin upper troposphere cirrus			
Ocurrence (%)	19	32	27	22			
Mean altitude of Cloud (km)	13.38 ± 0.56	9.67 ± 0.45	10.36 ± 0.65	11.77 ± 0.77			
Thickness (km)	2.31 ± 0.71	1.86 ± 0.81	3.85 ± 0.83	1.14 ± 0.67			
Relative height (km)	0.16 ± 1.74	6.54 ± 1.14	2.53 ± 2.17	4.53 ± 0.86			
Optical Depth	0.37 ± 0.45	0.19 ± 0.11	0.42 ± 0.26	0.08 ± 0.05			
Top altitude	14.52 ± 0.64	10.59 ± 0.60	12.27 ± 0.96	12.33 ± 0.67			
Mean temperature inside of the cloud (°C)	-64.89 ± 2.25	-37.94 ± 3.24	-43.21 ± 4.61	-53.51 ± 4.87			

Table 1: Comparison of LR from MSP-lidar with literature. The <RL> is calculated between 11-14 June 2007.

	LR (sr)
Giannakaki et al., 2007 (Mid latitude)	28 ±17
Sassen and Comstock, 2001	24±38
Seifert et al., 2007 (Maldivas)	32±10
MSP-lidar (<lr>)</lr>	26 ±12

 Table 2: Classification of crystal ice by Sassen and Dodd, 1989.

Crystal ice	1/LR (sr ⁻¹)
hexagonal	0,026
Thin plates	0,086
Thick plate and columnss	0,0838

To extend the methodology application on the MSP-lidar data measurements since 2004 with the goals to obtain a cirrus cloud climatology at Sao Paulo region.

Continue of the work and cooperation with Dr. Philippe Kechut from LATMOS/IPSL: use the same methodology applied atSao Paulo in the Isle Réunion located ~ same latitude (21°S)

Implement a depolarization channel on the MSP-lidar system

	z_{base}	Z_{top}	Z_{med}	T_{zbase}	T_{ztop}	T_{zmed}	CT
Periods	(km)	(km)	(km)	(°C)	(°C)	(°C)	(km)
		М	ulti-layer clo	oud – First L	ayer		
1	8.05	9.47	8.76	-26.77	-37.76	-32.47	1.42
2	7.75	9.56	8.65	-24.08	-38.50	-31.58	1.81
3	7.69	9.40	8.54	-23.61	-37.17	-30.74	1.70
4	7.85	9.01	8.43	-25.02	-34.49	-29.92	1.15
		Mu	lti-layer clou	ıd – Second	Layer		
1	9.79	11.19	10.49	-40.52	-52.87	-46.66	1.4
2	9.84	11.12	10.48	-41.01	-52.24	-46.59	1.28
3	10.05	10.89	10.47	-42.99	-49.98	-46.56	0.84
4	10.09	11.01	10.49	-43.33	-51.15	-47.2	0.91
			Mono-la	ayer cloud			
5	7.51	10.76	9.13	-21.88	-48.91	-35.47	3.27
6	8.44	10.74	9.59	-30.09	-48.8	-39.17	2.32
7	8.73	10.83	9.77	-32.19	-49.39	-40.64	2.12

Table 1 – Macro-physical properties of cirrus observed over São Paulo city from 11th June2007.

Periods	TT	τ_{cir_app}	τ_{cir_eff}	LR _{app} (sr)	LR _{eff} (sr)		
		Multi-layer clo	ud – First Layer				
1	0.76 ± 0.03	0.14 ± 0.02	0.13 ± 0.02	28 ± 4	26 ± 4		
2	0.65 ± 0.02	0.21 ± 0.01	0.19 ± 0.01	22 ± 1	19 ± 1		
3	0.83 ±0.03	0.09 ± 0.02	0.09 ± 0.02	25 ± 4	24 ± 4		
4	0.84 ± 0.03	0.09 ± 0.02	0.08 ± 0.02	35 ± 5	33 ± 5		
	1	Multi-layer cloud	d – Second Layer				
1	0.58 ± 0.04	0.28 ± 0.03	0.24 ± 0.03	37 ± 4	32 ± 4		
2	0.5 ± 0.02	0.35 ± 0.02	0.29 ± 0.02	39 ± 3	32 ± 3		
3	0.65 ± 0.02	0.22 ± 0.02	0.19 ± 0.02	38 ± 4	34 ± 4		
4	0.76 ± 0.02	0.14 ± 0.02	0.13 ± 0.02	74 ± 13	69 ± 12		
Mono-layer cloud							
5	0.16 ± 0.01	0.92 ± 0.01	0.56 ± 0.01	20 ± 1	12 ± 1		
6	0.34 ± 0.01	0.54 ± 0.01	0.41 ± 0.01	20 ± 2	15 ± 2		
7	0.48 ± 0.01	0.37 ± 0.01	0.30 ± 0.01	19 ± 1	16 ± 1		

Table 2. Optical properties of cirrus observed over São Paulo city from 11th June 2007.

