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Key metrics describing the evolution of the Manaus urban plume on March 13. Each data point represents the average values
for one pass through the plume. Mean wind speeds were 7 m/s on this flight, thus data capture approximately the first 4-5
hours of the plume aging. Calculations of AOrg/ACO values use method one with details on the calculations and methods
provided in the Sl. Spatial locations of each leg are labeled in Figure 1.



HEALD ET AL.: LARGE TROPOSPHERIC SOURCE OF OC AEROSOLS

ACE-Asia [Mader et al., 2002] ACE-Asia [Huebert et al., 2004a] ACE-Asia [Maria et al., 2003]
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15 years ago: an unknown atmospheric component

Today in 2018: NOT included explicitly in any climate model, even if it accounts
for 50-85% of global aerosol loading: It is all parameterized..

Even basic WRF-Chem do not include all SOA production mechanisms (urban or
remote)
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Schematic illustrating the participation of organic oxidation products as newly formed clusters either
grow and survive to CCN-active sizes or are lost by coagulation with the pre-existing aerosol
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Overall process of new-particle formation and growth involving association of oxidised organics and sulphuric acid. Initial stable cluster
formation requires rare but highly oxidised, extremely low volatility organics. As clusters grow, progressively more common but also more
volatile species can contribute to growth, until at some size near 10 nm the particle organic composition begins to resemble bulk organic-

aerosol composition.
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Processes governing the climatic importance of SOA
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IEPOX-SOA

* [soprene emitted by vegetation, gas-phase reactions to
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Production of IEPOX-derived PM from the
photooxidation of isoprene
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Fate of isoprene RO2 radicals (ISOPO2) depicting different chemical pathways that depend on the NOx, HOx, and
RO2 regimes. Several pathways lead to SOA formation, but the particle loading/composition differs greatly

between different regimes, and also depends on acidic/non-acidic seeds.
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IEPOX-SOA fractions of OA in various studies around the world (Hu et al. [2015])
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= Observational constraints of sulfate as a first
order predictor and NO as a modulator of
IEPOX-derived PM.

= NO, serves as indicator of integrated
exposure of airmass to NO chemistry.

= [IEPOX-SOA factor obtained from PMF
analysis of AMS data is a proxy for
IEPOX-derived PM.

= Lower loadings of IEPOX-SOA factor observed
for polluted compared to background conditions
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SYNTHESIS OF THE SOUTHEAST
ATMOSPHERE STUDIES

Investigating Fundamental Atmospheric
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Fic. |. SAS platforms and locations. Flight tracks are shown for (left) NOAA WP-3D aircraft during SENEX
and {right) NSF/NCAR C-130 during MNOMADSS.
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Fic. 2. Science questions and objectives of the coordinated SAS campaign.
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Global SOA particle-phase source (Tg yr-1) as predicted in
this study (NY_DPH) and as reported by previous studies.

Rethinking the global secondary organic SOA production from all sources (anthropogenic,
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oroduction, faster removal, shorter biomass burning, biofuel and biogenic) as well as from
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PARTICLE ORGANIC, GoAmazon2014/5, I0P1, 17 March 2014, 16:24 to 17:31
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PARTICLE SULFATE, GoAmazon2014/5, I0P1, 17 March 2014, 16:24 to 17:31
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Organic aerosols from ATTO to Tiwa and Manacapuru (with BC)
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More Secondary Aerosol Potential than Expected

Objective:
Test through in situ data sets the potential for secondary aerosol production and compare to
state of understanding with respect to known species and their reactive yields
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Results:

e Secondary aerosol produced from oxidation by OH of ambient air

* Production much greater than predicted from modeled yields of measured ambient
precursors

e Suggests that production is dominated by unmeasured species

Palm, Jimenez, et al., GoAmazon2014/5 Special Issue



SV-TAG - semi-volatile thermal desorption aerosol gas
E@!ﬁgg@&ﬂj&% chromatograph with in situ derivatization, which
Ambient Gas-Particle Partitioning of Tracers for Biogenic Oxidation prOVIdeS hourly resolved concentrations and gas_partlde
partitioning of most common BVOC oxidation tracers

SOAS+GoAmazon: The results of the present study show that the gas-particle partitioning of
approximately 100 known and newly observed oxidation products is not well explained by
environmental factors (e.g., temperature). Compounds having high vapor pressures have higher particle
fractions than expected from absorptive equilibrium partitioning models. Many commonly measured
biogenic oxidation products may be bound in low-volatility mass that decomposes to individual
compounds on analysis

: o )
OM .
o VU L : °
... Tt T OM »
0.8 - LR e ., '
S - e e B Mg
5 0.6- o 0 @ o) -
- ¢ i o predicted =
% %0 (0] o @] o' o
(a 0-2-' (o) P -
o o (o) i 0o
004 & =% 908 o o A
(o)
1 1 1 1 ] | ]
Approx. vapor pressure Site 2

Gabiriel Isaacman-VanWertz, A. Godstein EST 2016



12000 -
10000 -
¢ Clear Air Sounding
- 8000 - - All Clear Air Data
£ 6000 -
=
HALO Plane up to 13 Km altitude
4000 -
Flight ACO9 - 11 Sep 2015
Clean air in Northern Amazon Basin
2000 -
D | | | | | | 1
0 5000 10000 15000 20000 25000 30000 35000

Andi Andreae, 2016 (STP normalized)

CN, cm™ (preliminary values)




Biogenic organic aerosol formation at low H,50, happens in the UT

: processing reduces volatili (semi)volatile
Condensation to

Clouds as active aerosol processors in the atmosphere

compounds

new Particles

R

Particle — Boundary-Layer Aerosols
Grow (semi)volatile
Biogenic Volatiles
e |odlliticly

Andi Andreae, 2016

FOREST

Figure 1.6.3 - On the left panel we can observe how clouds can be active aerosol processors in the atmosphere of Amazonia. The right panel
shows how semi volatile compounds produced by the vegetation can be transported to the upper atmosphere by convection, where it
condenses due to low temperature and is processed and oxidized to less volatile compounds and produce particles that are brought to the

low atmosphere by precipitation.
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Aging of organic aerosol — Altitude & 82 dependence
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1 Strong pollution-enhanced biogenic SOA over the Amazon rainforest
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Fig.1. (a) OA measured along aircraft flight
transects at 500-m altitude on March 13
(orange) and model-predicted OA, as described
in the text. (b) Measured and model predicted
average percent enhancementin plume
compared to background organic aerosol on 4
different flight transects, as marked in (a). Bars
represent measurements while symbols
represent a model-predicted increase of OA
within Manaus plume compared to background
conditions

WRF-Chem simulations showing (a)
Biogenic SOA when all emissions are on
(b) Biogenic SOA when biogenic VOC
emissions are on but Manaus emissions
are turned off (c) Biogenic SOA
enhancement factor calculated as the
ratio of two simulations with Manaus
] emissions turned on/off i.e. (a)/(b).
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Fig. 3. WRF-Chem simulated concentrations of NOx
(ppbv), O3 (ppbv) and OH (106 molecule cm- 3) for
an altitude of ~500 m, averaged during the afternoon
(16-20 UTC) of March 13, 2014. Top panels show
simulations with all emissions on, while bottom
panels show simulations with biogenic emissions on
but Manaus emissions off. A comparison of top and
bottom panels demonstrates how NOx and oxidants
are greatly enhanced by the Manaus plume within
the otherwise pristine Amazon
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March 14 1.6 0.9 2.1 1.2 80.2 76.5 was determined by scanning all
radial locations downwind T1
Flight site
March 16 1.4 0.6 33 1.3 120.8 148.3
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Ailrcraft Observations of Aerosol in the Manaus Urban Plume and
Surrounding Tropical Forest during GoAmazon 2014/15

John E. Shillingl, Mikhail S. Pekour!, Edward C. Fortner?, Paulo Artaxo’, Suzane de Sa*, John M. Hubbe!,
Karla M. Longo’, Luiz A.T. Machado®, Scot T. Martin*’, Stephen R. Springston®, Jason Tomlinson!, Jian
Wang8
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Box and whisker representations of the G-1 AMS
data for both the wet and dry seasons (top panel),
average particle chemical composition for each

5% flight (middle panel), and average aerosol chemical
composition for all flights (bottom).
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Aircraft Observations of Aerosol in the Manaus Urban Plume and
Surrounding Tropical Forest during GoAmazon 2014/15

John E. Shilling', Mikhail 8. Pekour', Edward C. Fortner®, Paulo Artaxo®, Suzane de Sa', John M. Hubbe',
Karla M. Longo®, Luiz A.T. Machado®, Scot T. Martin*’, Stephen R. Springston®, Jason Tomlinson!, Jian

Wang®

Time traces of relevant quantities on March
13th, 2014 flight. AMS data uses the HR-
analysis routine described in the literature to
minimize interferences (Aiken et al., 2007).
Note the mass of inorganic species (S04, NO3,
NH4) has been multiplied by a factor of five to
improve the figure clarity. PTR-MS signal at
m/z 69 corresponds to isoprene, m/z 71
corresponds to the sum of methylvinyl ketone
(MVK), methacrolein (MACR), and isoprene
hydroxyhydroperoxide (ISOPOOH), all
oxidation products of isoprene, and m/z 79
corresponds to benzene.
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Aircraft Observations of Aerosol in the Manaus Urban Plume and
Surrounding Tropical Forest during GoAmazon 2014/15
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PMF analysis of the organic aerosol on the March 13th ®)
T

2014 flight. The PMF analysis utilized the high resolution
dataset. All data from the wet season were included in
the analysis.
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Aircraft Observations of Aerosol in the Manaus Urban Plume and
Surrounding Tropical Forest during GoAmazon 2014/15
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Key metrics describing the evolution of the Manaus urban plume on March 13. Each data point represents the average values for
one pass through the plume. Mean wind speeds were 7 m/s on this flight, thus data capture approximately the first 4-5 5 hours of
the plume aging. Calculations of AOrg/ACO values use method one with details on the calculations and methods provided in the
SI. Spatial locations of each leg are labeled in Figure 1.
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