Exercício Desafio I

Campo Magnético Gerado por uma Esfera Carregada em Rotação

C. Crepaldi¹ M. Clara Sassaki² L. G. N. Ribeiro Silva³

¹Bacharelado em Física (IF-USP) № USP 8540585

²Bacharelado em Meteorologia(IAG-USP) Nº USP: 6341572

> ³Bacharelado em Física (IF-USP) Nº USP: 7659216

> > Física III, 2014

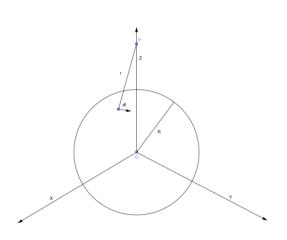
Índice

- Introdução
 - A Situação Estudada
 - Procedimento Adotado
- 2 Calculando o Campo \vec{B}
 - ullet Parte I Calculando o Campo $ar{B}$ Gerado por um Disco
 - ullet Parte II Calculando o Campo $ec{B}$ Gerado pela Esfera
 - Parte III Extrapolando o Resultado Anterior para um Ponto Interno da Esfera
- Conclusão
 - Discussão Final
 - Análise Gráfica

Índice

- Introdução
 - A Situação Estudada
 - Procedimento Adotado
- 2 Calculando o Campo \vec{B}
 - ullet Parte I Calculando o Campo $ar{B}$ Gerado por um Disco
 - ullet Parte II Calculando o Campo B Gerado pela Esfera
 - Parte III Extrapolando o Resultado Anterior para um Ponto Interno da Esfera
- Conclusão
 - Discussão Final
 - Análise Gráfica

Uma Introdução ao Problema



A situação estudada consiste de uma esfera maciça de raio R e densidade de carga ρ em rotação ao redor do eixo z com velocidade ângular ω . O objetivo é calcular o campo magnético B gerado pela esfera em um ponto P do eixo de rotação (z) a uma distância z>R do centro da esfera.

Índice

- Introdução
 - A Situação Estudada
 - Procedimento Adotado
- 2 Calculando o Campo \vec{B}
 - ullet Parte I Calculando o Campo $ar{B}$ Gerado por um Disco
 - ullet Parte II Calculando o Campo B Gerado pela Esfera
 - Parte III Extrapolando o Resultado Anterior para um Ponto Interno da Esfera
- Conclusão
 - Discussão Final
 - Análise Gráfica

• Para calcular o campo magnético \vec{B} gerado por essa esfera, será necessário separar o problema em duas partes.

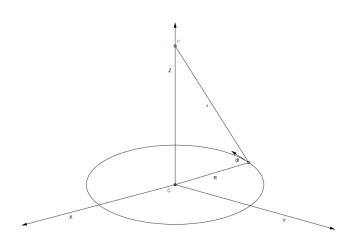
- Para calcular o campo magnético \vec{B} gerado por essa esfera, será necessário separar o problema em duas partes.
- Podemos considerar uma esfera como um conjunto de discos de espessura infinitesimal e raio variável (entre 0 e R) somados ao longo do eixo z. Dessa forma, o campo magnético resultante em um ponto P pode ser calculado através da soma das infinitas contribuições dadas por cada disco que forma a esfera.

• Primeiramente estudaremos o campo magnético que age em um ponto P pertencente ao eixo z e gerado por um disco com densidade de carga σ rotacionando em torno desse mesmo eixo.

- Primeiramente estudaremos o campo magnético que age em um ponto P pertencente ao eixo z e gerado por um disco com densidade de carga σ rotacionando em torno desse mesmo eixo.
- Após isso, podemos calcular o campo magnético que age nesse mesmo ponto P gerado por uma esfera rotacionando em torno do eixo z substituindo na equação obitida na primeira parte do problema as relações entre o disco e a esfera.

Índice

- Introdução
 - A Situação Estudada
 - Procedimento Adotado
- 2 Calculando o Campo \vec{B}
 - ullet Parte I Calculando o Campo $ec{B}$ Gerado por um Disco
 - Parte II Calculando o Campo B Gerado pela Esfera
 - Parte III Extrapolando o Resultado Anterior para um Ponto Interno da Esfera
- Conclusão
 - Discussão Final
 - Análise Gráfica



• Suponhamos a seguinte situação:

- Suponhamos a seguinte situação:
- Seja um disco de raio R, de centro C, com densidade superficial de carga σ e rotacionando no sentido anti-horário em torno do eixo z com velocidade angular ω .

- Suponhamos a seguinte situação:
- Seja um disco de raio R, de centro C, com densidade superficial de carga σ e rotacionando no sentido anti-horário em torno do eixo z com velocidade angular ω .
- Devemos calcular o campo magnético \vec{B} que age em um ponto P pertencente ao eixo de rotação e a uma distância z do centro do disco.

- Suponhamos a seguinte situação:
- Seja um disco de raio R, de centro C, com densidade superficial de carga σ e rotacionando no sentido anti-horário em torno do eixo z com velocidade angular ω .
- Devemos calcular o campo magnético \vec{B} que age em um ponto P pertencente ao eixo de rotação e a uma distância z do centro do disco.
- Rapidamente, podemos verificar através da regra da mão direita que o campo magnético só terá componente na vertical.

Direção e Sentido de $ec{B}$

• Seja o vetor \vec{r} aquele que liga o ponto P e \vec{dl} . É fácil perceber que $\vec{r} \perp \vec{dl}$.

Direção e Sentido de \vec{B}

- Seja o vetor \vec{r} aquele que liga o ponto P e \vec{dl} . É fácil perceber que $\vec{r} \perp \vec{dl}$.
- Temos que, após analisar geométricamente a situação, percebemos também que o ângulo θ entre R e r é o mesmo que ângulo entre a componente $d\vec{B}$ e o eixo z. Logo, utilizando essa relação e o fato de que \vec{B} só tem componente na vertical, temos que:

$$\vec{dB} = \vec{dB}_{x} + \vec{dB}_{y} \Rightarrow \vec{dB} = dB\sin(\theta)\,\hat{R} + dB\cos(\theta)\,\hat{z} \tag{1}$$

$$d\vec{B} = dB\cos(\theta)\,\hat{z}\tag{2}$$

Para calcular o campo magnético \vec{B} , utilizaremos a Lei de Biot-Savat:

Lei (Lei de Biot-Savat)

$$\vec{B} = \frac{\mu_0}{4\pi} \int_C \frac{I \, d\vec{l} \times \hat{r}}{r^2} \tag{3}$$

Para calcular o campo magnético \vec{B} , utilizaremos a Lei de Biot-Savat:

Lei (Lei de Biot-Savat)

$$\vec{B} = \frac{\mu_0}{4\pi} \int_C \frac{I\vec{dl} \times \hat{r}}{r^2} \tag{3}$$

Aplicando a lei de Biot-Savat, temos que:

$$dB = \frac{\mu_0 I}{4\pi} \frac{|\vec{d}l \times \hat{r}|}{r^2} = \frac{\mu_0 I}{4\pi} \frac{dI}{r^2}$$
 (4)

$$\vec{dB} = \frac{\mu_0 I}{4\pi} \frac{dI}{r^2} \cos(\theta) \hat{z} \tag{5}$$

$$\vec{dB} = \frac{\mu_0 I}{4\pi} \frac{dI}{r^2} \cos(\theta) \,\hat{z} \tag{5}$$

$$\vec{B} = \frac{\mu_0 I \cos(\theta)}{4\pi r^2} \int_C dI \,\hat{z} = \frac{\mu_0 I \cos(\theta)}{4\pi r^2} 2\pi R \hat{z}$$
 (6)

$$\vec{dB} = \frac{\mu_0 I}{4\pi} \frac{dI}{r^2} \cos(\theta) \,\hat{z} \tag{5}$$

$$\vec{B} = \frac{\mu_0 I \cos(\theta)}{4\pi r^2} \int_C dI \,\hat{z} = \frac{\mu_0 I \cos(\theta)}{4\pi r^2} 2\pi R \hat{z}$$
 (6)

$$\vec{B} = \frac{\mu_0 I}{4\pi r^3} 2\pi R^2 \,\hat{z} \tag{7}$$

$$\vec{dB} = \frac{\mu_0 I}{4\pi} \frac{dI}{r^2} \cos(\theta) \,\hat{z} \tag{5}$$

$$\vec{B} = \frac{\mu_0 I \cos(\theta)}{4\pi r^2} \int_C dI \,\hat{z} = \frac{\mu_0 I \cos(\theta)}{4\pi r^2} 2\pi R \hat{z}$$
 (6)

$$\vec{B} = \frac{\mu_0 I}{4\pi r^3} 2\pi R^2 \,\hat{z} \tag{7}$$

Resultado Inicial (I Constante)

$$\vec{B} = \frac{\mu_0 I R^2}{2(R^2 + z^2)^{3/2}} \tag{8}$$

Aplicando o resultado para l(r)

 Como o nosso disco está rotacionando, temos que a corrente elétrica é da forma:

$$dI = \frac{dq}{T} = \frac{\sigma}{T} dS = \frac{\sigma}{2\pi} \omega dS = \sigma \omega r dr$$
 (9)

Aplicando o resultado para I(r)

 Como o nosso disco está rotacionando, temos que a corrente elétrica é da forma:

$$dI = \frac{dq}{T} = \frac{\sigma}{T} dS = \frac{\sigma}{2\pi} \omega dS = \sigma \omega r dr$$
 (9)

• Substituindo dI na equação (8) e integrando de 0 a R, temos:

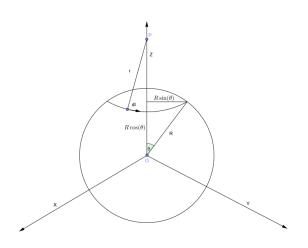
$$\vec{B} = \frac{\mu_0 \sigma \omega}{2} \int_0^R \frac{r^3}{(r^2 + z^2)^{3/2}} \, dr \, \hat{z}$$
 (10)

Campo \vec{B} Gerado por um Disco

$$\vec{B} = \frac{\mu_0 \sigma \omega}{2} \left[\frac{R^2 + 2z^2}{\sqrt{R^2 + z^2}} - 2z \right] \hat{z}$$
 (11)

Índice

- Introdução
 - A Situação Estudada
 - Procedimento Adotado
- 2 Calculando o Campo \vec{B}
 - ullet Parte I Calculando o Campo $ar{B}$ Gerado por um Disco
 - ullet Parte II Calculando o Campo $ec{B}$ Gerado pela Esfera
 - Parte III Extrapolando o Resultado Anterior para um Ponto Interno da Esfera
- Conclusão
 - Discussão Final
 - Análise Gráfica



Através das relações geométricas expressadas na figura anterior, podemos calcular o campo magnético produzido pela esfera ao substituir na equação (11):

$$\begin{cases}
R \to R \sin(\theta) \\
z \to z - R \cos(\theta)
\end{cases}$$
(12)

Através das relações geométricas expressadas na figura anterior, podemos calcular o campo magnético produzido pela esfera ao substituir na equação (11):

$$\begin{cases} R \to R \sin(\theta) \\ z \to z - R \cos(\theta) \end{cases} \tag{12}$$

Quanto a densidade superficial de carga (σ) , podemos afirmar que:

$$\rho = \frac{dQ}{dV} = \frac{dQ}{Adh} = \frac{d\sigma}{dh} \tag{13}$$

Através das relações geométricas expressadas na figura anterior, podemos calcular o campo magnético produzido pela esfera ao substituir na equação (11):

$$\begin{cases} R \to R \sin(\theta) \\ z \to z - R \cos(\theta) \end{cases} \tag{12}$$

Quanto a densidade superficial de carga (σ) , podemos afirmar que:

$$\rho = \frac{dQ}{dV} = \frac{dQ}{Adh} = \frac{d\sigma}{dh} \tag{13}$$

Podemos dizer que a espessura dh é $|d(R\cos(\theta))| = R\sin(\theta) d\theta$. Sendo assim, temos que:

$$d\sigma = \rho dh = \rho \sin(\theta) d\theta \tag{14}$$

Calculando o Campo

Simplificando a equação (11), chegamos que:

$$\vec{B} = \mu_0 \sigma \omega \left[\sqrt{R^2 + z^2} - \frac{R^2/2}{\sqrt{R^2 + z^2}} - z \right] \hat{z}$$
 (15)

Calculando o Campo

Simplificando a equação (11), chegamos que:

$$\vec{B} = \mu_0 \sigma \omega \left[\sqrt{R^2 + z^2} - \frac{R^2/2}{\sqrt{R^2 + z^2}} - z \right] \hat{z}$$
 (15)

Substituindo as relações (12) e (14) na equação (15) e integrando de 0 a π , temos:

$$\vec{B} = \mu_0 \rho \omega R \int_0^{\pi} \sin(\theta) \left[\sqrt{R^2 + z^2 - 2zR\cos(\theta)} - \frac{R^2 \sin^2(\theta)/2}{\sqrt{R^2 + z^2 - 2zR\cos(\theta)}} - (z - R\cos(\theta)) \right] d\theta \,\hat{z}$$
(16)

Sendo ψ a integral definida por:

$$\psi = \int_0^{\pi} \sin(\theta) \left[\sqrt{R^2 + z^2 - 2zR\cos(\theta)} - \frac{R^2 \sin^2(\theta)/2}{\sqrt{R^2 + z^2 - 2zR\cos(\theta)}} - \frac{R^2 \sin^2(\theta)}{\sqrt{R^2 + z^2 - 2zR\cos(\theta)}} \right] d\theta$$

$$(17)$$

Sendo ψ a integral definida por:

$$\psi = \int_0^{\pi} \sin(\theta) \left[\sqrt{R^2 + z^2 - 2zR\cos(\theta)} - \frac{R^2 \sin^2(\theta)/2}{\sqrt{R^2 + z^2 - 2zR\cos(\theta)}} - (17) - (z - R\cos(\theta)) \right] d\theta$$

Podemos resolvê-la por meio do método da substituição de variáveis.

$$\begin{cases} u = \cos(\theta) \\ du = -\sin(\theta)d\theta \end{cases}$$
 (18)

$$\psi = \int_{-1}^{1} \left[\sqrt{R^2 + z^2 - 2zRu} - \frac{R^2(1 - u^2)/2}{\sqrt{R^2 + z^2 - 2zRu}} - (z - Ru) \right] du \quad (19)$$

$$\psi = \int_{-1}^{1} \left[\sqrt{R^2 + z^2 - 2zRu} - \frac{R^2(1 - u^2)/2}{\sqrt{R^2 + z^2 - 2zRu}} - (z - Ru) \right] du \quad (19)$$

$$\psi = \int_{-1}^{1} \left[\sqrt{R^2 + z^2 - 2zRu} - \frac{R^2}{2} \left\{ \frac{(1 - u^2)}{\sqrt{R^2 + z^2 - 2zRu}} \right\} - (z - Ru) \right] du$$
(20)

Resolvendo a Integral ψ

$$\psi = \int_{-1}^{1} \left[\sqrt{R^2 + z^2 - 2zRu} - \frac{R^2(1 - u^2)/2}{\sqrt{R^2 + z^2 - 2zRu}} - (z - Ru) \right] du \quad (19)$$

$$\psi = \int_{-1}^{1} \left[\sqrt{R^2 + z^2 - 2zRu} - \frac{R^2}{2} \left\{ \frac{(1 - u^2)}{\sqrt{R^2 + z^2 - 2zRu}} \right\} - (z - Ru) \right] du$$
(20)

$$\psi = \psi_1 - \frac{R^2}{2} \{ \psi_2 - \psi_3 \} - \psi_4 + \psi_5 \tag{21}$$

Resolvendo a Integral ψ

As integrais ψ_1 , ψ_2 , ψ_3 , ψ_4 , ψ_5 , podem ser resolvidas analíticamente ou através de algum software de integração simbólica como o Mathematica. Ao resolver essas cinco integrais e substituindo na equação (21), temos que:

$$\psi = \frac{4R^4}{5z^3} \tag{22}$$

Resolvendo a Integral ψ

As integrais ψ_1 , ψ_2 , ψ_3 , ψ_4 , ψ_5 , podem ser resolvidas analíticamente ou através de algum software de integração simbólica como o Mathematica. Ao resolver essas cinco integrais e substituindo na equação (21), temos que:

$$\psi = \frac{4R^4}{5z^3} \tag{22}$$

Dessa forma, temos que o campo \vec{B} gerado pela esfera em rotação é dado pela equação:

Campo \vec{B} Gerado pela Esfera (z>R)

$$\vec{B}_{(z>R)} = \mu_0 \omega \rho \frac{2R^5}{15z^3} \hat{z} \tag{23}$$

Índice

- Introdução
 - A Situação Estudada
 - Procedimento Adotado
- 2 Calculando o Campo \vec{B}
 - ullet Parte I Calculando o Campo $ar{B}$ Gerado por um Disco
 - ullet Parte II Calculando o Campo B Gerado pela Esfera
 - Parte III Extrapolando o Resultado Anterior para um Ponto Interno da Esfera
- Conclusão
 - Discussão Final
 - Análise Gráfica

Procedimento e Cálculo de \vec{B}_1

Sendo z' o raio de uma casca esférica, para um ponto P interno a esfera (z<R), temos que o campo B é dado pela soma das contribuições de duas regiões:

$$\begin{cases} (1): 0 \le z' \le z \\ (2): z \le z' \le R \end{cases} \tag{24}$$

Procedimento e Cálculo de \vec{B}_1

Sendo z' o raio de uma casca esférica, para um ponto P interno a esfera (z<R), temos que o campo B é dado pela soma das contribuições de duas regiões:

$$\begin{cases} (1): 0 \le z' \le z \\ (2): z \le z' \le R \end{cases} \tag{24}$$

Para a região 1, temos que o campo B gerado por ela corresponte ao campo B gerado por uma esfera de raio z.

Sendo assim, podemos simplesmente substituir R por z na equação (23):

$$\vec{B}_1 = \frac{2}{15}\mu_0\omega\rho z^2\,\hat{z} \tag{25}$$

Calculando \vec{B}_2

No livro "Introduction to Electrodynamics" do Griffiths, temos que a intensidade do campo magnético gerado por uma casca esférica de raio z' e densidade de carga σ é dada por:

$$B = \frac{2}{3}\mu_0\sigma\omega z' \tag{26}$$

Calculando \vec{B}_2

No livro "Introduction to Electrodynamics" do Griffiths, temos que a intensidade do campo magnético gerado por uma casca esférica de raio z' e densidade de carga σ é dada por:

$$B = \frac{2}{3}\mu_0\sigma\omega z' \tag{26}$$

Essa relação é provada no exemplo (5.11) e é expressada na equação (5.68) do livro.

Sendo assim, substituindo $d\sigma = \rho \, dz'$ na equação (26), temos que a contribuição da região 2 pode ser dada por:

$$\vec{B}_2 = \frac{2}{3}\mu_0\omega\rho \int_z^R z' \, dz' \, \hat{z} = \frac{1}{3}\mu_0\omega\rho (R^2 - z^2) \, \hat{z}$$
 (27)

Calculando $\vec{B}_{(z < R)}$

O campo $\vec{B}_{(z < R)}$ é dado pela relação:

$$\vec{B}_{(z< R)} = \vec{B}_1 + \vec{B}_2 \tag{28}$$

Calculando $\vec{B}_{(z < R)}$

O campo $\vec{B}_{(z < R)}$ é dado pela relação:

$$\vec{B}_{(z$$

Logo, ao substituir \vec{B}_1 e \vec{B}_2 na equação (28) e simplificar um pouco o resultado, temos que:

Campo \vec{B} Gerado pela Esfera (z<R)

$$\vec{B}_{(z < R)} = \mu_0 \rho \omega \left(\frac{R^2}{3} - \frac{z^2}{5} \right) \hat{z} \tag{29}$$

Índice

- Introdução
 - A Situação Estudada
 - Procedimento Adotado
- 2 Calculando o Campo \vec{B}
 - ullet Parte I Calculando o Campo $ec{B}$ Gerado por um Disco
 - ullet Parte II Calculando o Campo B Gerado pela Esfera
 - Parte III Extrapolando o Resultado Anterior para um Ponto Interno da Esfera
- Conclusão
 - Discussão Final
 - Análise Gráfica

Resultados

Concluímos que o campo magnético \vec{B} gerado por uma esfera rotacionando ao redor do eixo z, com densidade superficial de carga ρ e velocidade angular ω , sentido em um ponto P pertencente ao eixo de rotação da esfera e a uma distância z dp centro da esfera, pode ser dado por:

$$\vec{B} = \begin{cases} \mu_0 \rho \omega \left(\frac{R^2}{3} - \frac{z^2}{5} \right) \hat{z} & (z \le R) \\ \mu_0 \omega \rho \left(\frac{2R^5}{15z^3} \right) \hat{z} & (z \ge R) \end{cases}$$
(30)

Índice

- Introdução
 - A Situação Estudada
 - Procedimento Adotado
- 2 Calculando o Campo \vec{B}
 - ullet Parte I Calculando o Campo $ar{B}$ Gerado por um Disco
 - ullet Parte II Calculando o Campo B Gerado pela Esfera
 - Parte III Extrapolando o Resultado Anterior para um Ponto Interno da Esfera
- Conclusão
 - Discussão Final
 - Análise Gráfica

Gráfico de $|\vec{B}|$

